

Midwest Pooled Fund Research Program Fiscal Years 2017-2019 (Years 27 through 29) Research Project Number TPF-5 (193) Supplement #106 NDOT Sponsoring Agency Code RPFP-17-MGS-2

EVALUATION OF THE MGS PLACED 6 IN. BEHIND A 6-IN. TALL AASHTO TYPE-B CURB TO MASH TL-3

Submitted by

Kellon Ronspies, M.S.M.E. Former Graduate Research Assistant Scott Rosenbaugh, M.S.C.E., E.I.T. Research Engineer

Robert W. Bielenberg, M.S.M.E., E.I.T. Research Engineer Ronald K. Faller, Ph.D., P.E. Research Professor & MwRSF Director

Cody S. Stolle, Ph.D., E.I.T. Research Assistant Professor

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

MIDWEST POOLED FUND PROGRAM

Nebraska Department of Transportation 1500 Nebraska Highway 2 Lincoln, Nebraska 68502

MwRSF Research Report No. TRP-03-390-20

August 27, 2020

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-390-20	2. Government Accession No.		3. Recipient's Catalog No.	
4. Title and Subtitle	5. Report Date			
Evaluation of the MGS Placed 6 i	August 27, 2020			
to MASH TL-3	6.Performing Organization Code			
7. Author(s)			8. Performing Organization Report No.	
Ronspies, K.B., Rosenbaugh, S.K C.S.	TRP-03-390-20			
9. Performing Organization Nat Midwest Roadside Safety Facility Nebraska Transportation Center University of Nebraska-Lincoln			10. Work Unit No.	
Main Office: Prem S. Paul Research Center at V Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	Whittier School	Outdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524	11. Contract TPF-5 (193) Supplement #106	
12. Sponsoring Organization Na Midwest Pooled Fund Program			13. Type of Report and Period Covered Final Report: 2017-2020	
Nebraska Department of Transportation 1500 Nebraska Highway 2 Lincoln, Nebraska 68502			14. Sponsoring Agency Code RPFP-17-MGS-2	
15. Supplementary Notes				

Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration.

16. Abstract

The use of curbs along roads is often required for certain functions such as drainage control, right-of-way reduction and sidewalk separation. However, curbs along roadways can adversely affect the interaction of errant vehicles with roadside barriers. Curbs placed near guardrail systems increase the propensity for vehicle override, vehicle underride, vehicle instability, and excessive rail loading during impact events. The Midwest Guardrail System (MGS) installed behind curbs was evaluated under National Cooperative Highway Research Program (NCHRP) Report 350 Test Level 3 (TL-3) criteria but has not been evaluated to American Association of State Highway Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware* (MASH) TL-3.

Test nos. MGSC-7 and MGSC-8 were conducted on the MGS offset by 6 in. behind a 6-in. tall AASHTO Type B curb in accordance with MASH 2016 test designation nos. 3-10 and 3-11, respectively. During test no. MGSC-7, the 1100C vehicle impacted the system at 63.6 mph at an angle of 25.0 degrees and was successfully contained and redirected by the system. The system was rebuilt and tested again according to MASH test designation no. 3-11. In test MGSC-8, the 2270P vehicle impacted the system at 63.4 mph at an angle of 25.7 degrees and was successfully contained and redirected by the system. Upon the successful completion of the two full-scale crash tests, the MGS was deemed crashworthy to MASH 2016 TL-3 when placed within 6 in. behind a curb. Installation guidelines were presented to address implementation of the MGS with curb in various barrier configurations as well as in conjunction with a number of roadside features and special applications.

17. Key Words Highway Safety, Crash Test, Roa Compliance Test, MASH 2016, M (MGS), Curb, Test Level 3 (TL_3	Aidwest Guardrail System	18. Distribution Statement No restrictions. Document available from: National Technical Information Service. 5285 Port Royal Road Springfield, Virginia 22161		
19. Security Classification (of this report)20. Security Classification (of this page)		21. No. of Pages	22. Price	
Unclassified	Unclassified	214		

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

DISCLAIMER STATEMENT

This material is based upon work supported by the Federal Highway Administration, U.S. Department of Transportation and the Midwest Pooled Fund Program under TPF-5(193) Supplement #106. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Nebraska-Lincoln, state highway departments participating in the Midwest Pooled Fund Program, nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government and the State of Nebraska do not endorse products or manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Dr. Jennifer Rasmussen, Research Associate Professor.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) the Midwest Pooled Fund Program funded by the California Department of Transportation, Florida Department of Transportation, Georgia Department of Transportation, Hawaii Department of Transportation, Illinois Department of Transportation, Indiana Department of Transportation, Iowa Department of Transportation, Kansas Department of Transportation, Kentucky Department of Transportation, Minnesota Department of Transportation, Missouri Department of Transportation, Nebraska Department of Transportation, New Jersey Department of Transportation, North Carolina Department of Transportation, Ohio Department of Transportation, South Carolina Department of Transportation, South Dakota Department of Transportation, Utah Department of Transportation, Virginia Department of Transportation, Wisconsin Department of Transportation, and Wyoming Department of Transportation for sponsoring this project; and (2) MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

J.D. Reid, Ph.D., Professor J.C. Holloway, M.S.C.E., E.I.T., Research Engineer & Assistant Director - Physical Testing Division K.A. Lechtenberg, M.S.M.E., E.I.T., Research Engineer J.D. Rasmussen, Ph.D., P.E., Research Associate Professor J.S. Steelman, Ph.D., P.E., Associate Professor M. Pajouh, Ph.D., P.E., Research Assistant Professor A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Construction and Testing Technician II S.M. Tighe, Construction and Testing Technician I D.S. Charroin, Construction and Testing Technician I R.M. Novak, Construction and Testing Technician I T.C. Donahoo, Construction and Testing Technician I J.T. Jones, Construction and Testing Technician I J.E. Kohtz, B.S.M.E., CAD Technician E.L. Urbank, B.A., Research Communication Specialist Z.Z. Jabr, Engineering Technician Undergraduate and Graduate Research Assistant

California Department of Transportation

Bob Meline, Chief, Roadside Safety Research Branch David Whitesel, P.E., Transportation Engineer John Jewell, P.E., Senior Transportation Engineer, Specialist

Florida Department of Transportation

Derwood C. Sheppard, Jr., P.E., Design Standards Publication Manager, Roadway Design Engineer

Georgia Department of Transportation

Brent Story, P.E., State Design Policy Engineer Frank Flanders IV, P.E., Assistant State Design Policy Engineer

Hawaii Department of Transportation

James Fu, P.E., State Bridge Engineer Dean Takiguchi, P.E., Engineer, Bridge Design Section Kimberly Okamura, Engineer, Bridge Design Section

Illinois Department of Transportation

Filiberto Sotelo, Safety Evaluation Engineer Martha Brown, P.E., Safety Evaluation Unit Chief

Indiana Department of Transportation

Katherine Smutzer, P.E., Standards Engineer Elizabeth Phillips, P.E., Standards and Policy Manager

Iowa Department of Transportation

Chris Poole, P.E., Roadside Safety Engineer Brian Smith, P.E., Methods Engineer Daniel Harness, P.E., Transportation Engineer Specialist Stuart Nielsen, P.E., Transportation Engineer Administrator, Design Elijah Gansen, P.E., Geometrics Engineer

Kansas Department of Transportation

Ron Seitz, P.E., Director of Design Scott King, P.E., Road Design Bureau Chief Thomas Rhoads, P.E., Road Design Leader, Bureau of

Road Design Brian Kierath Jr., Engineering Associate III, Bureau of Road Design

Kentucky Department of Transportation

Jason J. Siwula, P.E., Assistant State Highway Engineer Kevin Martin, P.E., Transportation Engineer Specialist Gary Newton, Engineering Tech III, Design Standards

Minnesota Department of Transportation

Michael Elle, P.E., Design Standards Engineer Michelle Moser, P.E., Assistant Design Standards Engineer

Missouri Department of Transportation

Sarah Kleinschmit, P.E., Policy and Innovations Engineer

Nebraska Department of Transportation

Phil TenHulzen, P.E., Design Standards Engineer
Jim Knott, P.E., Construction Engineer
Mike Owen, P.E., State Roadway Design Engineer
Mick Syslo, P.E., Materials and Research Engineer & Division Head
Mark Fischer, P.E., Research Program Manager
Lieska Halsey, Assistant Materials Engineer
Angela Andersen, Research Coordinator
David T. Hansen, Internal Research Coordinator

Jodi Gibson, Former Research Coordinator

New Jersey Department of Transportation

Hung Tang, Senior Engineer, Transportation Joseph Warren, Assistant Engineer, Transportation

North Carolina Department of Transportation

Neil Mastin, P.E., Manager, Transportation Program Management – Research and Development

D. D. "Bucky" Galloway, P.E., CPM, Field Operations Engineer

Brian Mayhew, P.E., State Traffic Safety Engineer Joel Howerton, P.E., Plans and Standards Engineer

Ohio Department of Transportation

Don Fisher, P.E., Roadway Standards Engineer

South Carolina Department of Transportation

J. Adam Hixon, P.E., Design Standards Associate Mark H. Anthony, P.E., Letting Preparation Engineer Henry Cross, P.E., Design Standards Engineer Jason Hall, P.E., Engineer

South Dakota Department of Transportation

David Huft, P.E., Research Engineer Bernie Clocksin, P.E., Standards Engineer

Utah Department of Transportation

Shawn Debenham, Traffic and Safety Specialist Glenn Blackwelder, Operations Engineer

Virginia Department of Transportation

Charles Patterson, P.E., Standards/Special Design Section Manager

Andrew Zickler, P.E., Complex Bridge Design and ABC Support Program Manager

Wisconsin Department of Transportation

Erik Emerson, P.E., Standards Development Engineer Rodney Taylor, P.E., Roadway Design Standards Unit Supervisor

Wyoming Department of Transportation

William Wilson, P.E., Architectural and Highway Standards Engineer

Federal Highway Administration

David Mraz, Division Bridge Engineer, Nebraska Division Office

	SI* (MODER	RN METRIC) CONVEI	RSION FACTORS	
		XIMATE CONVERSIONS		
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in.	inches	25.4	millimeters	mm
ft .	feet	0.305	meters	m
yd	yards	0.914	meters	m Israe
mi	miles	1.61	kilometers	km
in ²	aguara inchas	AREA 645.2	aguana millimatana	
ft ²	square inches square feet	0.093	square millimeters square meters	$\frac{mm^2}{m^2}$
yd ²	square yard	0.836	square meters	m^2
ac	acres	0.405	hectares	ha
mi ²	square miles	2.59	square kilometers	km ²
	*	VOLUME		
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m ³
yd ³	cubic yards	0.765	cubic meters	m ³
	NOTE	: volumes greater than 1,000 L shall	be shown in m ³	
		MASS		
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
Т	short ton (2,000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")
		TEMPERATURE (exact de	grees)	
°F	Fahrenheit	5(F-32)/9	Celsius	°C
		or (F-32)/1.8		
c	C . 11	ILLUMINATION		
fc	foot-candles	10.76	lux	lx
fl	foot-Lamberts	3.426	candela per square meter	cd/m ²
11.0		FORCE & PRESSURE or S		N
lbf lbf/in ²	poundforce	4.45 6.89	newtons	N kPa
101/111	poundforce per square inch		kilopascals	кра
		MATE CONVERSIONS I		
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
mm	millimeters	0.039	inches	in.
m	meters	3.28	feet	ft
m km	meters kilometers	1.09 0.621	yards miles	yd mi
KIII	KHOIHEIEIS	AREA	lilles	1111
	square millimeters	0.0016	aguara inches	in^2
mm ² m ²	square meters	10.764	square inches square feet	ft ²
m ²	square meters	1.195	square yard	yd ²
ha	hectares	2.47	acres	ac
km ²	square kilometers	0.386	square miles	mi ²
	1	VOLUME	1	
mL	milliliter	0.034	fluid ounces	fl oz
L	liters	0.264	gallons	gal
m ³	cubic meters	35.314	cubic feet	ft ³
m ³	cubic meters	1.307	cubic yards	yd ³
		MASS		
g	grams	0.035	ounces	OZ
kg	kilograms	2.202	pounds	lb
Mg (or "t")	megagrams (or "metric ton")		short ton (2,000 lb)	Т
		TEMPERATURE (exact de		
°C	Celsius	1.8C+32	Fahrenheit	°F
		ILLUMINATION		
lx	lux	0.0929	foot-candles	fc
cd/m ²	candela per square meter	0.2919	foot-Lamberts	fl
		FORCE & PRESSURE or S		
N	newtons	0.225	poundforce	lbf
kPa	kilopascals	0.145	poundforce per square inch	lbf/in ²

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
1 INTRODUCTION	1
1.1 Background	
1.2 Objective	
1.3 Scope	
2 TEST REQUIREMENTS AND EVALUATION CRITERIA	
2.1 Test Requirements	
2.2 Evaluation Criteria	
2.3 Soil Strength Requirements	
3 DESIGN DETAILS	5
3.1 Test No. MGSC-7	
3.2 Test No. MGSC-8	
4 TEST CONDITIONS	
4.1 Test Facility	
4.2 Vehicle Tow and Guidance System	
4.3 Test Vehicles	
4.4 Simulated Occupant	
4.5 Data Acquisition Systems	
4.5.1 Accelerometers	
4.5.2 Rate Transducers	
4.5.3 Retroreflective Optic Speed Trap	
4.5.4 Digital Photography	
5 FULL-SCALE CRASH TEST NO. MGSC-7	
5.1 Static Soil Test	
5.2 Weather Conditions	
5.3 Test Description	
5.4 Barrier Damage	
5.5 Vehicle Damage	
5.6 Occupant Risk	
5.7 Discussion	
6 FULL-SCALE CRASH TEST NO. MGSC-8	

6.1 Static Soil Test	81
6.2 Weather Conditions	81
6.3 Test Description	81
6.4 Barrier Damage	91
6.5 Vehicle Damage	. 102
6.6 Occupant Risk	. 108
6.7 Discussion	. 109
7 SUMMARY AND CONCLUSIONS	. 112
8 RECOMMENDATIONS AND IMPLEMENTATION GUIDANCE	. 114
8.1 MGS to Curb Offset	. 114
8.2 Applicable Curb Shapes and Heights	. 114
8.3 MGS Height Tolerances	. 115
8.4 Approach Slopes and Gutters	. 115
8.5 MGS Configurations and Special Applications	. 116
8.5.1 Wood Post MGS	
8.5.2 MGS without Blockouts	. 116
8.5.3 MGS with 8-in. Deep Blockouts	
8.5.4 MGS with an Omitted Post	. 117
8.5.5 Roadside Slopes	. 117
8.5.6 Guardrail Stiffness Transitions	. 118
8.5.7 Guardrail End Terminals and Anchorages	. 118
9 MASH EVALUATION	. 119
10 REFERENCES	. 120
11 APPENDICES	. 124
Appendix A. Material Specifications	
Appendix B. Vehicle Center of Gravity Determination	. 160
Appendix C. Static Soil Tests	. 163
Appendix D. Vehicle Deformation Records	. 167
Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. MGSC-7	. 180
Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. MGSC-8	. 197

LIST OF FIGURES

Figure 1. System Layout, Test No. MGSC-7	6
Figure 2. Post Detail, Test No. MGSC-7	7
Figure 3. Splice and Post Detail, Test No. MGSC-7	8
Figure 4. End Section Detail, Test No. MGSC-7	
Figure 5. BCT Anchor Detail, Test No. MGSC-7	.10
Figure 6. Post Nos. 3 through 27 Components, Test No. MGSC-7	.11
Figure 7. BCT Timber Post and Foundation Tube Detail, Test No. MGSC-7	.12
Figure 8. BCT Anchor Cable, Test No. MGSC-7	
Figure 9. BCT Post Components and Anchor Bracket, Test No. MGSC-7	.14
Figure 10. Ground Strut Details, Test No. MGSC-7	.15
Figure 11. Rail Section Details, Test No. MGSC-7	
Figure 12. Hardware, Test No. MGSC-7	.17
Figure 13. Bill of Materials, Test No. MGSC-7	
Figure 14. Test Installation Photographs, Test No. MGSC-7	
Figure 15. Test Installation Photographs, Test No. MGSC-7	
Figure 16. System Layout, Test No. MGSC-8	.22
Figure 17. Post Detail, Test No. MGSC-8	
Figure 18. Splice and Post Detail, Test No. MGSC-8	
Figure 19. End Section Detail, Test No. MGSC-8	
Figure 20. BCT Anchor Detail, Test No. MGSC-8	.26
Figure 21. Post Nos. 3 through 27 Components, Test No. MGSC-8	
Figure 22. BCT Timber Post and Foundation Tube Detail, Test No. MGSC-8	.28
Figure 23. BCT Anchor Cable, Test No. MGSC-8	.29
Figure 24. BCT Post Components and Anchor Bracket, Test No. MGSC-8	.30
Figure 25. Ground Strut Details, Test No. MGSC-8	.31
Figure 26. Rail Section Details, Test No. MGSC-8	.32
Figure 27. Hardware, Test No. MGSC-8	
Figure 28. Bill of Materials, Test No. MGSC-8	.34
Figure 29. Test Installation Photographs, Test No. MGSC-8	.35
Figure 30. Test Installation Photographs, Test No. MGSC-8	.36
Figure 31. Test Vehicle, Test No. MGSC-7	
Figure 32. Test Vehicle's Undercarriage and Interior Floorboards, Test No. MGSC-7	.40
Figure 33. Vehicle Dimensions, Test No. MGSC-7	.41
Figure 34. Test Vehicle, Test No. MGSC-8	.42
Figure 35. Test Vehicle's Undercarriage, Test No. MGSC-8	.43
Figure 36. Vehicle Dimensions, Test No. MGSC-8	.44
Figure 37. Target Geometry, Test No. MGSC-7	.45
Figure 38. Target Geometry, Test No. MGSC-8	
Figure 39. Camera Locations, Speeds, and Lens Settings, Test No. MGSC-7	.49
Figure 40. Camera Locations, Speeds, and Lens Settings, Test No. MGSC-8	
Figure 41. Impact Location, Test No. MGSC-7	
Figure 42. Sequential Photographs, Test No. MGSC-7	
Figure 43. Sequential Photographs, Test No. MGSC-7	
Figure 44. Sequential Photographs, Test No. MGSC-7	
Figure 45. Documentary Photographs, Test No. MGSC-7	

Figure 46.	Documentary Photographs, Test No. MGSC-7	59
	Documentary Photographs, Test No. MGSC-7	
Figure 48.	Vehicle Final Position and Trajectory Marks, Test No. MGSC-7	61
Figure 49.	System Damage, Test No. MGSC-7	63
Figure 50.	Guardrail Damage, Post Nos. 13 through 15, Test No. MGSC-7	64
Figure 51.	Guardrail Damage, Post Nos. 15 through 18 Test No. MGSC-7	65
Figure 52.	Backside Guardrail Damage, Post Nos. 13 through 16, Test No. MGSC-7	66
	Backside Guardrail Damage, Post Nos. 16 through 18, Test No. MGSC-7	
	Post Nos. 14 and 15 Damage, Test No. MGSC-7	
Figure 55.	Post Nos. 16 and 17 Damage, Test No. MGSC-7	69
	Partial Rail Tearing, Test No. MGSC-7	
Figure 57.	Curb Damage, Test No. MGSC-7	71
	Permanent Deflection, Dynamic Deflection, and Working Width, Test No.	
-	MGSC-7	72
	Vehicle Damage, Test No. MGSC-7	
Figure 60.	Vehicle Damage, Test No. MGSC-7	75
Figure 61.	Occupant Compartment Damage, Test No. MGSC-7	76
Figure 62.	Vehicle Undercarriage Damage, Test No. MGSC-7	77
Figure 63.	Summary of Test Results and Sequential Photographs, Test No. MGSC-7	80
Figure 64.	Impact Location, Test No. MGSC-8	84
	Sequential Photographs, Test No. MGSC-8	
	Sequential Photographs, Test No. MGSC-8	
Figure 67.	Sequential Photographs, Test No. MGSC-8	87
	Documentary Photographs, Test No. MGSC-8	
	Additional Documentary Photographs, Test No. MGSC-8	
Figure 70.	Vehicle Final Position and Trajectory Marks, Test No. MGSC-8	90
Figure 71.	System Damage, Test No. MGSC-8	92
0	System Damage, Guardrail at Post Nos. 12 through 14, Test No. MGSC-8	
Figure 73.	System Damage, Guardrail at Post Nos. 14 through 17, Test No. MGSC-8	94
Figure 74.	System Damage, Guardrail at Post Nos. 17 through 19, Test No. MGSC-8	95
Figure 75.	System Damage, Backside Rail at Post Nos. 12 through 15, Test No. MGSC-8	96
Figure 76.	System Damage, Backside Rail at Post Nos. 16 through 19, Test No. MGSC-8	97
		98
Figure 78.	System Damage, Post Nos. 16 through 19, Test No. MGSC-8	99
Figure 79.	System Damage, Post Nos. 25 through 29, Test No. MGSC-8	100
Figure 80.	Permanent Deflection, Dynamic Deflection, and Working Width, Test No.	
	MGSC-8	
	Vehicle Damage, Test No. MGSC-8	
	Vehicle Damage, Test No. MGSC-8	
0	Vehicle Windshield Damage, Test No. MGSC-8	
Figure 84.	Occupant Compartment Damage, Test No. MGSC-8	106
	Vehicle Undercarriage Damage, Test No. MGSC-8	
	Summary of Test Results and Sequential Photographs, Test No. MGSC-8	
0	Standard AASHTO Curb Shapes	
0	Minimum Recommended Distance between Omitted Posts	117
Figure A-	1. 12-ft 6-in. W-Beam MGS Interior and End Sections, Test Nos. MGSC-7 and	
	MGSC-8	127

Higure A-3. 72-in. Long Steel Post, Test Nos. MGSC-7 and MGSC-8. 129 Figure A-5. Timber Blockouts for Steel Posts, Test Nos. MGSC-7 and MGSC-8. 131 Figure A-6. Timber Blockouts for Steel Posts, Test Nos. MGSC-7 and MGSC-8. 132 Figure A-7. Timber Blockouts for Steel Posts, Test Nos. MGSC-7 and MGSC-8. 133 Figure A-8. 16D Double-Headed Nail, Test Nos. MGSC-7 and MGSC-8. 134 Figure A-9. BCT Timber Post, Test Nos. MGSC-7 and MGSC-8. 135 Figure A-10. Foundation Tube, Test Nos. MGSC-7 and MGSC-8. 136 Figure A-11. Ground Strut Assembly, Test Nos. MGSC-7 and MGSC-8. 138 Figure A-12. Ground Strut Assembly, Test Nos. MGSC-7 and MGSC-8. 140 Figure A-13. BCT Post Sleeve, Test Nos. MGSC-7 and MGSC-8. 140 Figure A-14. Anchor Bearing Plate, Test Nos. MGSC-7 and MGSC-8. 141 Figure A-15. BCT Anchor Cable, Test Nos. MGSC-7 and MGSC-8. 141 Figure A-13. BCT Washers, Test Nos. MGSC-7 and MGSC-8. 144 Figure A-13. BCT Washers, Test Nos. MGSC-7 and MGSC-8. 144 Figure A-24. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8. 144 Figure A-25. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8. 144 Figure A-21. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8. 145 <th>Figure A-2. 6-ft 3-in. W-Beam MGS Section, Test Nos. MGSC-7 and MGSC-8</th> <th>128</th>	Figure A-2. 6-ft 3-in. W-Beam MGS Section, Test Nos. MGSC-7 and MGSC-8	128																																																												
Figure A-5. Timber Blockouts for Steel Posts, Test Nos. MGSC-7 and MGSC-8 131 Figure A-7. Timber Blockouts for Steel Posts, Test Nos. MGSC-7 and MGSC-8 132 Figure A-7. Timber Blockouts for Steel Posts, Test Nos. MGSC-7 and MGSC-8 133 Figure A-8. 16D Double-Headed Nail, Test Nos. MGSC-7 and MGSC-8 134 Figure A-10. Foundation Tube, Test Nos. MGSC-7 and MGSC-8 135 Figure A-11. Ground Strut Assembly, Test Nos. MGSC-7 and MGSC-8 136 Figure A-12. Ground Strut Assembly, Test Nos. MGSC-7 and MGSC-8 139 Figure A-13. BCT Post Sleeve, Test Nos. MGSC-7 and MGSC-8 140 Figure A-16. BCT Anchor Cable, Test Nos. MGSC-7 and MGSC-8 140 Figure A-16. BCT Anchor Cable, Test Nos. MGSC-7 and MGSC-8 141 Figure A-16. BCT Anchor Cable, Test Nos. MGSC-7 and MGSC-8 142 Figure A-17. BCT Cable Nuts, Test Nos. MGSC-7 and MGSC-8 144 Figure A-18. BCT Washers, Test Nos. MGSC-7 and MGSC-8 144 Figure A-20. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8 144 Figure A-21. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8 144 Figure A-22. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8 149 Figure A-23. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8 149	0																																																													
Figure A-6. Timber Blockouts for Steel Posts, Test Nos. MGSC-7 and MGSC-8																																																														
Figure A-7. Timber Blockouts for Steel Posts, Test Nos. MGSC-7 and MGSC-8 133 Figure A-8. 16D Double-Headed Nail, Test Nos. MGSC-7 and MGSC-8 134 Figure A-9. BCT Timber Post, Test Nos. MGSC-7 and MGSC-8 135 Figure A-10. Foundation Tube, Test Nos. MGSC-7 and MGSC-8 136 Figure A-11. Ground Strut Assembly, Test Nos. MGSC-7 and MGSC-8 137 Figure A-12. Ground Strut Assembly, Test Nos. MGSC-7 and MGSC-8 139 Figure A-13. BCT Post Sleeve, Test Nos. MGSC-7 and MGSC-8 140 Figure A-16. BCT Anchor Cable, Test Nos. MGSC-7 and MGSC-8 141 Figure A-16. BCT Anchor Cable, Test Nos. MGSC-7 and MGSC-8 142 Figure A-17. BCT Cable Nuts, Test Nos. MGSC-7 and MGSC-8 142 Figure A-18. BCT Washers, Test Nos. MGSC-7 and MGSC-8 144 Figure A-20. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8 144 Figure A-21. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8 144 Figure A-22. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8 144 Figure A-23. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8 149 Figure A-24. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8 150 Figure A-25. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8 151	Figure A-5. Timber Blockouts for Steel Posts, Test Nos. MGSC-7 and MGSC-8	131																																																												
Figure A-8. 16D Double-Headed Nail, Test Nos. MGSC-7 and MGSC-8	Figure A-6. Timber Blockouts for Steel Posts, Test Nos. MGSC-7 and MGSC-8	132																																																												
Figure A-9. BCT Timber Post, Test Nos. MGSC-7 and MGSC-8																																																														
Figure A-10. Foundation Tube, Test Nos. MGSC-7 and MGSC-8136Figure A-11. Ground Strut Assembly, Test Nos. MGSC-7 and MGSC-8137Figure A-12. Ground Strut Assembly, Test Nos. MGSC-7 and MGSC-8138Figure A-13. BCT Post Sleeve, Test Nos. MGSC-7 and MGSC-8140Figure A-16. BCT Anchor Bracket Assembly, Test Nos. MGSC-7 and MGSC-8141Figure A-16. BCT Anchor Cable, Test Nos. MGSC-7 and MGSC-8142Figure A-16. BCT Anchor Cable, Test Nos. MGSC-7 and MGSC-8144Figure A-16. BCT Anchor Cable, Test Nos. MGSC-7 and MGSC-8144Figure A-10. Wain, by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8144Figure A-20. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8146Figure A-20. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8147Figure A-20. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8148Figure A-22. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8149Figure A-23. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8150Figure A-24. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8151Figure A-26. %-in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8152Figure A-26. %-in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8152Figure A-27. %-in. Hax Nuts, Test Nos. MGSC-7 and MGSC-8153Figure A-28. %-in. by 12-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8153Figure A-30. %-in. by 13-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8155Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and	•																																																													
Figure A-11. Ground Strut Assembly, Test Nos. MGSC-7 and MGSC-8137Figure A-12. Ground Strut Assembly, Test Nos. MGSC-7 and MGSC-8138Figure A-13. BCT Post Sleeve, Test Nos. MGSC-7 and MGSC-8140Figure A-14. Anchor Bearing Plate, Test Nos. MGSC-7 and MGSC-8140Figure A-15. Anchor Bracket Assembly, Test Nos. MGSC-7 and MGSC-8141Figure A-16. BCT Anchor Cable, Test Nos. MGSC-7 and MGSC-8143Figure A-17. BCT Cable Nuts, Test Nos. MGSC-7 and MGSC-8143Figure A-18. BCT Washers, Test Nos. MGSC-7 and MGSC-8144Figure A-19. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8145Figure A-20. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8146Figure A-21. %-in. Diameter Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8147Figure A-22. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8148Figure A-23. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8150Figure A-24. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8151Figure A-25. %-in. by 10-in. Long Har Bolt, Test Nos. MGSC-7 and MGSC-8152Figure A-26. %-in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8152Figure A-27. %-in. Har Nuts, Test Nos. MGSC-7 and MGSC-8153Figure A-28. %-in. by 10-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8154Figure A-29. %-in. Dia. by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8154Figure A-29. %-in. Dia. by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8154Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8																																																														
Figure A-12. Ground Strut Assembly, Test Nos. MGSC-7 and MGSC-8138Figure A-13. BCT Post Sleeve, Test Nos. MGSC-7 and MGSC-8139Figure A-13. Anchor Bearing Plate, Test Nos. MGSC-7 and MGSC-8141Figure A-15. Anchor Bracket Assembly, Test Nos. MGSC-7 and MGSC-8141Figure A-16. BCT Anchor Cable, Test Nos. MGSC-7 and MGSC-8142Figure A-17. BCT Cable Nuts, Test Nos. MGSC-7 and MGSC-8143Figure A-18. BCT Washers, Test Nos. MGSC-7 and MGSC-8144Figure A-19. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8145Figure A-20. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8146Figure A-21. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8147Figure A-22. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8149Figure A-23. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8149Figure A-24. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8150Figure A-25. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8151Figure A-26. %-in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8152Figure A-27. %-in. Hex Nuts, Test Nos. MGSC-7 and MGSC-8153Figure A-28. %-in. by 1½-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8154Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8155Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8155Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8156Figure C-1. Soil Strength, Initial Calibration Tests164Fi																																																														
Figure A-13. BCT Post Sleeve, Test Nos. MGSC-7 and MGSC-8.139Figure A-14. Anchor Bearing Plate, Test Nos. MGSC-7 and MGSC-8.140Figure A-15. Anchor Bracket Assembly, Test Nos. MGSC-7 and MGSC-8.141Figure A-16. BCT Anchor Cable, Test Nos. MGSC-7 and MGSC-8.142Figure A-17. BCT Cable Nuts, Test Nos. MGSC-7 and MGSC-8.143Figure A-18. BCT Washers, Test Nos. MGSC-7 and MGSC-8.144Figure A-20. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.144Figure A-20. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.146Figure A-21. %-in. Diameter Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.147Figure A-22. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.148Figure A-23. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.149Figure A-24. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.150Figure A-25. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.151Figure A-26. %-in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8.153Figure A-27. %-in. Hex Nuts, Test Nos. MGSC-7 and MGSC-8.153Figure A-28. %-in. by 1½-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8.153Figure A-30. %-in. Dia by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8.154Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8.155Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.155Figure B-3. Nethick Mass Distribution, Test Nos. MGSC-7 and MGSC-8.156Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and M																																																														
Figure A-14. Anchor Bearing Plate, Test Nos. MGSC-7 and MGSC-8.140Figure A-15. Anchor Bracket Assembly, Test Nos. MGSC-7 and MGSC-8.141Figure A-16. BCT Anchor Cable, Test Nos. MGSC-7 and MGSC-8.142Figure A-17. BCT Cable Nuts, Test Nos. MGSC-7 and MGSC-8.143Figure A-18. BCT Washers, Test Nos. MGSC-7 and MGSC-8.144Figure A-19. $\%$ -in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.144Figure A-20. $\%$ -in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.146Figure A-21. $\%$ -in. Diameter Guardrail Nut, Test Nos. MGSC-7 and MGSC-8.147Figure A-22. $\%$ -in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.147Figure A-23. $\%$ -in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.149Figure A-24. $\%$ -in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.150Figure A-25. $\%$ -in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.151Figure A-26. $\%$ -in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8.152Figure A-26. $\%$ -in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8.152Figure A-27. $\%$ -in. Hex Nuts, Test Nos. MGSC-7 and MGSC-8.153Figure A-28. $\%$ -in. by 1 $\%$ -in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8.154Figure A-30. $\%$ -in. Diameter Nuts, Test Nos. MGSC-7 and MGSC-8.155Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8.156Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.155Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.156Figure C-1. Soil Strength, Initial Ca	•																																																													
Figure A-15. Anchor Bracket Assembly, Test Nos. MGSC-7 and MGSC-8141Figure A-16. BCT Anchor Cable, Test Nos. MGSC-7 and MGSC-8142Figure A-17. BCT Cable Nuts, Test Nos. MGSC-7 and MGSC-8143Figure A-18. BCT Washers, Test Nos. MGSC-7 and MGSC-8144Figure A-19. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8144Figure A-20. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8145Figure A-21. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8147Figure A-22. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8149Figure A-23. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8150Figure A-24. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8151Figure A-25. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8152Figure A-26. %-in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8152Figure A-27. %-in. Hex Nuts, Test Nos. MGSC-7 and MGSC-8153Figure A-28. %-in. by 11/2-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8154Figure A-29. %-in. Dia. by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8155Figure A-30. %-in. Diameter Nuts, Test Nos. MGSC-7 and MGSC-8155Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8158Figure B-3. Uchicle Mass Distribution, Test No. MGSC-7161Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure C-2. Static Soil Test, Test No. MGSC-7164Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7166 <td< td=""><td></td><td></td></td<>																																																														
Figure A-16. BCT Anchor Cable, Test Nos. MGSC-7 and MGSC-8142Figure A-17. BCT Cable Nuts, Test Nos. MGSC-7 and MGSC-8143Figure A-18. BCT Washers, Test Nos. MGSC-7 and MGSC-8144Figure A-19. $%$ -in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8145Figure A-20. $%$ -in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8146Figure A-21. $%$ -in. Diameter Guardrail Nut, Test Nos. MGSC-7 and MGSC-8147Figure A-22. $%$ -in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8148Figure A-23. $%$ -in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8149Figure A-24. $%$ -in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8150Figure A-25. $%$ -in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8151Figure A-26. $%$ -in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8153Figure A-26. $%$ -in. by 11/2-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8154Figure A-28. $%$ -in. by 11/2-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8154Figure A-30. $%$ -in. Dia by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8155Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8158Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8158Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure C-2. Static Soil Test, Test No. MGSC-7161Figure D-3. Static Soil Test, Test No. MGSC-7165Figure D-4. Interior Crush Deformation Data – Set 1, Test No. MGSC-7170Figure D-5. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7 <td< td=""><td></td><td></td></td<>																																																														
Figure A-17. BCT Cable Nuts, Test Nos. MGSC-7 and MGSC-8.143Figure A-18. BCT Washers, Test Nos. MGSC-7 and MGSC-8.144Figure A-19. $%$ -in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.145Figure A-20. $%$ -in. Diameter Guardrail Nut, Test Nos. MGSC-7 and MGSC-8.146Figure A-21. $%$ -in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.147Figure A-23. $%$ -in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.148Figure A-23. $%$ -in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.150Figure A-24. $%$ -in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8.151Figure A-25. $%$ -in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8.152Figure A-26. $%$ -in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8.153Figure A-26. $%$ -in. by 10-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8.153Figure A-28. $%$ -in. by 10-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8.155Figure A-29. $%$ -in. Dia. by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8.155Figure A-30. $%$ -in. Dia by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8.155Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8.156Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.157Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7.161Figure C-2. Static Soil Test, Test No. MGSC-7.161Figure C-3. Static Soil Test, Test No. MGSC-7.166Figure D-4. Interior Crush Deformation Data – Set 1, Test No. MGSC-7.168Figure D-5. Exterior Vehicle Crush (NASS) -																																																														
Figure A-18. BCT Washers, Test Nos. MGSC-7 and MGSC-8144Figure A-19. ¼-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8145Figure A-20. ¼-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8146Figure A-21. ¼-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8147Figure A-22. ¼-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8148Figure A-23. ¼-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8149Figure A-24. ¼-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8150Figure A-25. ¼-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8151Figure A-26. ¼-in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8152Figure A-26. ¼-in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8153Figure A-28. ¼-in. by 1½-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8154Figure A-29. ¼-in. Dia by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8155Figure A-30. ¼-in. Diameter Nuts, Test Nos. MGSC-7 and MGSC-8155Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8155Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8158Figure B-3. Vehicle Mass Distribution, Test No. MGSC-7161Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure D-2. Floor Pan Deformation Data – Set 1, Test No. MGSC-7166Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7170Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7 <td< td=""><td></td><td></td></td<>																																																														
Figure A-19. $\%$ -in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8145Figure A-20. $\%$ -in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8146Figure A-21. $\%$ -in. Diameter Guardrail Nut, Test Nos. MGSC-7 and MGSC-8147Figure A-22. $\%$ -in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8148Figure A-23. $\%$ -in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8149Figure A-24. $\%$ -in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8150Figure A-25. $\%$ -in. by 11/4-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8151Figure A-26. $\%$ -in. by 11/4-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8152Figure A-26. $\%$ -in. by 11/2-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8153Figure A-29. $\%$ -in. Dia. by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8154Figure A-29. $\%$ -in. Dia by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8155Figure A-30. $\%$ -in. Dia by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8155Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8155Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8158Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure C-2. Static Soil Test, Test No. MGSC-7164Figure C-3. Static Soil Test, Test No. MGSC-7165Figure D-4. Interior Crush Deformation Data – Set 1, Test No. MGSC-7166Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7170Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7172Figure D-7. Floor Pan Defo																																																														
Figure A-20. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8146Figure A-21. %-in. Diameter Guardrail Nut, Test Nos. MGSC-7 and MGSC-8147Figure A-22. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8148Figure A-23. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8149Figure A-24. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8150Figure A-25. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8151Figure A-26. %-in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8152Figure A-26. %-in. by 10-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8153Figure A-28. %-in. by 1½-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8154Figure A-29. %-in. Dia by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8155Figure A-30. %-in. Diameter Nuts, Test Nos. MGSC-7 and MGSC-8155Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8156Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8158Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure C-2. Static Soil Test, Test No. MGSC-7164Figure C-3. Static Soil Test, Test No. MGSC-7165Figure D-4. Interior Crush Deformation Data – Set 1, Test No. MGSC-7168Figure D-5. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7170Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7171Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173 <t< td=""><td></td><td></td></t<>																																																														
Figure A-21. %-in. Diameter Guardrail Nut, Test Nos. MGSC-7 and MGSC-8.147Figure A-22. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8148Figure A-23. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8149Figure A-24. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8150Figure A-25. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8151Figure A-26. %-in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8152Figure A-27. %-in. Hex Nuts, Test Nos. MGSC-7 and MGSC-8153Figure A-29. %-in. by 1½-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8154Figure A-29. %-in. Dia. by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8155Figure A-30. %-in. Diameter Nuts, Test Nos. MGSC-7 and MGSC-8156Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8157Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8158Figure B-3. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8159Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-2. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7173Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-7173Figure D-																																																														
Figure A-22. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8148Figure A-23. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8149Figure A-24. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8150Figure A-25. %-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8151Figure A-26. %-in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8152Figure A-26. %-in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8153Figure A-28. %-in. by 14/-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8154Figure A-28. %-in. Dia. by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8155Figure A-29. %-in. Dia by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8156Figure A-30. %-in. Diameter Nuts, Test Nos. MGSC-7 and MGSC-8157Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8158Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7169Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7170Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 2, Test No. MGSC-7174Figure D-8. Floor Pan Deformation Data – Set 1, Test No. MGSC-7174																																																														
Figure A-23. $\frac{1}{2}$ in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8149Figure A-24. $\frac{1}{2}$ in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8150Figure A-25. $\frac{1}{2}$ in. by 11/4-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8151Figure A-26. $\frac{1}{2}$ in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8152Figure A-27. $\frac{1}{2}$ in. Hex Nuts, Test Nos. MGSC-7 and MGSC-8153Figure A-28. $\frac{1}{2}$ in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8154Figure A-29. $\frac{1}{2}$ in. Dia. by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8155Figure A-30. $\frac{1}{2}$ in. Diameter Nuts, Test Nos. MGSC-7 and MGSC-8155Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8157Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8158Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure C-2. Static Soil Test, Test No. MGSC-7162Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7172Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 2, Test No. MGSC-7173Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-7173Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7173Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173<																																																														
Figure A-24. %-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8150Figure A-25. %-in. by 11/4-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8151Figure A-26. %-in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8152Figure A-27. %-in. Hex Nuts, Test Nos. MGSC-7 and MGSC-8153Figure A-28. %-in. by 11/2-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8154Figure A-29. %-in. Dia. by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8155Figure A-29. %-in. Dia. by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8156Figure A-30. %-in. Diameter Nuts, Test Nos. MGSC-7 and MGSC-8157Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8158Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8159Figure B-3. 10 Curb Concrete Strength, Test No. MGSC-7 and MGSC-8159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-7161Figure C-3. Static Soil Test, Test No. MGSC-7165Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-7173Figure D-6. Exterior Vehicle C																																																														
Figure A-25. %-in. by 1¼-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8151Figure A-26. %-in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8152Figure A-27. %-in. Hex Nuts, Test Nos. MGSC-7 and MGSC-8153Figure A-28. %-in. by 1½-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8154Figure A-29. %-in. Dia. by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8155Figure A-30. %-in. Diameter Nuts, Test Nos. MGSC-7 and MGSC-8156Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8157Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8158Figure B-3. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7169Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-7173Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-7173Figure D-9. Interior Crush Deformation Data – Set 2, Test No. MGSC-7173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-7173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-7173Figure D-9. Interior Crush Deformation Data – Set 1, Te	. .																																																													
Figure A-27. $\frac{1}{4}$ -in. Hex Nuts, Test Nos. MGSC-7 and MGSC-8																																																														
Figure A-28. $\frac{1}{2}$ -in. by $\frac{1}{2}$ -in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8154Figure A-29. $\frac{1}{2}$ -in. Dia. by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8155Figure A-30. $\frac{1}{2}$ -in. Diameter Nuts, Test Nos. MGSC-7 and MGSC-8156Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8157Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8158Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7170Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-7173Figure D-8. Floor Pan Deformation Data – Set 1, Test No. MGSC-7173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-7173Figure D-9. Interior Crush Deformation Data – Set 2, Test No. MGSC-7173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-7173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Se	Figure A-26. ⁵ / ₈ -in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8	152																																																												
Figure A-29. %-in. Dia. by 8-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8155Figure A-30. %-in. Diameter Nuts, Test Nos. MGSC-7 and MGSC-8156Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8157Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8158Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7173Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-8174Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-7173Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-8174Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 1, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8175 <tr <td<="" td=""><td></td><td></td></tr> <tr><td>Figure A-30. %-in. Diameter Nuts, Test Nos. MGSC-7 and MGSC-8.156Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8.157Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.158Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7.161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8.162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7.165Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7.168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7.169Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7.170Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7.173Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-8.174Figure D-8. Floor Pan Deformation Data – Set 1, Test No. MGSC-7.173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-7.173Figure D-6. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7.173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8.174Figure D-8. Floor Pan Deformation Data – Set 1, Test No. MGSC-8.174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.174</td><td>Figure A-28. 5%-in. by 11/2-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8</td><td>154</td></tr> <tr><td>Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8157Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8158Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure D-3. Static Soil Test, Test No. MGSC-8166Figure D-2. Floor Pan Deformation Data – Set 1, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7170Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-7173Figure D-8. Floor Pan Deformation Data – Set 1, Test No. MGSC-7173Figure D-5. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8174</td><td></td><td></td></tr> <tr><td>Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.158Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8.162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7.165Figure D-3. Static Soil Test, Test No. MGSC-8.166Figure D-2. Floor Pan Deformation Data – Set 1, Test No. MGSC-7.169Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7.170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7.171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7.172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7.173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-7.173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-7.173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-7.173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.176</td><td></td><td></td></tr> <tr><td>Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8174</td><td></td><td></td></tr> <tr><td>Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 2, Test No. MGSC-8176</td><td></td><td></td></tr> <tr><td>Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176</td><td></td><td></td></tr> <tr><td>Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176</td><td></td><td></td></tr> <tr><td>Figure C-2. Static Soil Test, Test No. MGSC-7165Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176</td><td></td><td></td></tr> <tr><td>Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176</td><td></td><td></td></tr> <tr><td>Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7.168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7.169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7.170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7.171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7.172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7.173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8.174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8.175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.176</td><td></td><td></td></tr> <tr><td>Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7.169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7.170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7.171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7.172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7.173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8.174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8.175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.176</td><td></td><td></td></tr> <tr><td>Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7</td><td></td><td></td></tr> <tr><td>Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7</td><td></td><td></td></tr> <tr><td>Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176</td><td></td><td></td></tr> <tr><td>Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176</td><td>•</td><td></td></tr> <tr><td>Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8</td><td></td><td></td></tr> <tr><td>Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8</td><td></td><td></td></tr> <tr><td>Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176</td><td></td><td></td></tr> <tr><td>•</td><td></td><td></td></tr> <tr><td></td><td>Figure D-10. Interior Crush Deformation Data – Set 2, Test No. MGSC-8</td><td>177</td></tr>			Figure A-30. %-in. Diameter Nuts, Test Nos. MGSC-7 and MGSC-8.156Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8.157Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.158Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7.161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8.162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7.165Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7.168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7.169Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7.170Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7.173Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-8.174Figure D-8. Floor Pan Deformation Data – Set 1, Test No. MGSC-7.173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-7.173Figure D-6. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7.173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8.174Figure D-8. Floor Pan Deformation Data – Set 1, Test No. MGSC-8.174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.174	Figure A-28. 5%-in. by 11/2-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8	154	Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8157Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8158Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure D-3. Static Soil Test, Test No. MGSC-8166Figure D-2. Floor Pan Deformation Data – Set 1, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7170Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-7173Figure D-8. Floor Pan Deformation Data – Set 1, Test No. MGSC-7173Figure D-5. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8174			Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.158Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8.162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7.165Figure D-3. Static Soil Test, Test No. MGSC-8.166Figure D-2. Floor Pan Deformation Data – Set 1, Test No. MGSC-7.169Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7.170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7.171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7.172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7.173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-7.173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-7.173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-7.173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.176			Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8174			Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 2, Test No. MGSC-8176			Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176			Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176			Figure C-2. Static Soil Test, Test No. MGSC-7165Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176			Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176			Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7.168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7.169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7.170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7.171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7.172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7.173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8.174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8.175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.176			Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7.169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7.170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7.171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7.172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7.173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8.174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8.175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.176			Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7			Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7			Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176			Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176	•		Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8			Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8			Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176			•				Figure D-10. Interior Crush Deformation Data – Set 2, Test No. MGSC-8	177
Figure A-30. %-in. Diameter Nuts, Test Nos. MGSC-7 and MGSC-8.156Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8.157Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.158Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7.161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8.162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7.165Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7.168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7.169Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7.170Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7.173Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-8.174Figure D-8. Floor Pan Deformation Data – Set 1, Test No. MGSC-7.173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-7.173Figure D-6. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7.173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8.174Figure D-8. Floor Pan Deformation Data – Set 1, Test No. MGSC-8.174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.174	Figure A-28. 5%-in. by 11/2-in. Long Hex Bolts, Test Nos. MGSC-7 and MGSC-8	154																																																												
Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8157Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8158Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure D-3. Static Soil Test, Test No. MGSC-8166Figure D-2. Floor Pan Deformation Data – Set 1, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7170Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-7173Figure D-8. Floor Pan Deformation Data – Set 1, Test No. MGSC-7173Figure D-5. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8174																																																														
Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.158Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8.162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7.165Figure D-3. Static Soil Test, Test No. MGSC-8.166Figure D-2. Floor Pan Deformation Data – Set 1, Test No. MGSC-7.169Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7.170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7.171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7.172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7.173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-7.173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-7.173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-7.173Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.176																																																														
Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8.159Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8174																																																														
Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7161Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 2, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8174Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 2, Test No. MGSC-8176																																																														
Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8162Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176																																																														
Figure C-1. Soil Strength, Initial Calibration Tests164Figure C-2. Static Soil Test, Test No. MGSC-7165Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176																																																														
Figure C-2. Static Soil Test, Test No. MGSC-7165Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176																																																														
Figure C-3. Static Soil Test, Test No. MGSC-8166Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176																																																														
Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSC-7.168Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7.169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7.170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7.171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7.172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7.173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8.174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8.175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.176																																																														
Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7.169Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7.170Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7.171Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7.172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7.173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8.174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8.175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8.176																																																														
Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7																																																														
Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7																																																														
Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7172Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176																																																														
Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7173Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8174Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8175Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176	•																																																													
Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8																																																														
Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8																																																														
Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8176																																																														
•																																																														
	Figure D-10. Interior Crush Deformation Data – Set 2, Test No. MGSC-8	177																																																												

LIST OF TABLES

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	3
Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier	4
Table 3. Weather Conditions, Test No. MGSC-7	51
Table 4. Sequential Description of Impact Events, Test No. MGSC-7	52
Table 5. Sequential Description of Impact Events, Test No. MGSC-7, Cont	53
Table 6. Maximum Occupant Compartment Intrusion by Location, Test No. MGSC-7	78
Table 7. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSC-7	79
Table 8. Weather Conditions, Test No. MGSC-8	81
Table 9. Sequential Description of Impact Events, Test No. MGSC-8	82
Table 10. Sequential Description of Impact Events, Test No. MGSC-8, Cont	83
Table 11. Maximum Occupant Compartment Intrusions by Location, Test No. MGSC-8	108
Table 12. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSC-8	109
Table 13. Summary of Safety Performance Evaluation	113
Table A-1. Bill of Materials, Test Nos. MGSC-7 and MGSC-8	126

1 INTRODUCTION

1.1 Background

The use of curbs along roads is often required for certain functions such as drainage control, right-of-way reduction, and sidewalk separation. However, curbs along roadways can adversely affect the interaction of errant vehicles with roadside barriers. When curbs are placed near guardrail systems, the propensity increases for vehicle override, vehicle underride, vehicle instability, and excessive rail loading.

During the initial development and evaluation of the Midwest Guardrail System (MGS), the guardrail was tested in combination with a 6-in. tall concrete curb [1]. The MGS was positioned with the face of the rail offset 6 in. behind a 6-in. tall American Association of State Highway and Transportation Officials (AASHTO) Type B curb, and a full-scale crash test was successfully conducted with the 2000P pickup truck in accordance with test designation no. 3-11 of *National Cooperative Highway Research Program (NCHRP) Report 350* [2] criteria. However, no small car tests were conducted with the MGS adjacent to curbs.

Since 2009, AASHTO has improved the criteria for the evaluation of roadside hardware beyond the previous NCHRP Report 350 standard. The new standard, entitled the *Manual for Assessing Safety Hardware* (MASH) [3], enforced updates to test vehicles, test matrices, and impact conditions. A second edition of MASH was released in 2016 [4], but very little was changed in the evaluation of longitudinal guardrail systems. In an effort to encourage state departments of transportation and hardware developers to advance hardware designs, the Federal Highway Administration (FHWA) and AASHTO collaborated to develop a MASH implementation policy that includes sunset dates for various roadside categories. To date, the MGS installed adjacent to curbs has not been evaluated to the MASH evaluation criteria.

In the late 2000s, the Midwest Pooled Fund Program conducted research to investigate the safety performance of the MGS installed at increased offsets behind a 6-in. AASHTO Type B concrete curb. In the initial phase of the research, a series of vehicle-curb traversal tests, including the 2270P pickup truck, the 1100C small car, and the 2000P pickup truck, were performed at Test Level 3 (TL-3) impact conditions [5]. The results of those vehicle tests combined with computer simulations were used to establish critical MGS-to-curb offset distances. For the second phase of the research, a full-scale crash test was performed on the MGS offset 8 ft behind a 6-in. Type B curb with a top mounting height of 31 in. relative to the ground, or 37 in. relative to the roadway [6]. In the test, the vehicle was contained by the guardrail, but became unstable and rolled over. High-speed video revealed that the right-front tire snagged on a post and detached. The right-rear tire of the pickup truck traversed over the detached tire, causing the rear of the vehicle to pitch upward. The vehicle subsequently became unstable and rolled over. Thus, the MGS offset 8 ft behind a 6-in. high curb was deemed to be unacceptable according to TL-3 of MASH. The final phase of the research consisted of a MASH TL-2 full-scale crash test performed on the MGS offset 6 ft behind a 6-in. high Type B curb with a top mounting height of 31 in. relative to the ground [7]. In the test, the 2270P vehicle was redirected by the guardrail and all safety performance criteria were met. Thus, the MGS offset 6 ft behind a 6-in. tall Type-B curb was deemed to be acceptable according to MASH TL-2.

More recently, testing of the MGS stiffness transition to a thrie-beam approach guardrail transition revealed possible issues with small cars impacting W-beam guardrail over curbs. During testing of the MGS stiffness transition on level terrain (i.e., without a curb present), the 1100C vehicle was contained and redirected [8]. However, when a 4-in. tall wedge shaped curb was placed underneath the stiffness transition and the test was repeated, the system failed as the W-beam segment adjacent to the transition tore and the 1100C vehicle snagged on the downstream posts [9]. Subsequent testing of the stiffness transition incorporating nested W-beam rail adjacent to the W-to-thrie transition segment satisfied all MASH criteria and showed no signs of rail tearing.

Finally, the MGS was recently full-scale crash tested placed 6 in. behind a 6-in. tall curb and with an omitted post located just downstream from the impact point. During MASH test designation no. 3-10 with the 1100C small car, the W-beam rail tore at the splice located within the elongated span length allowing the vehicle to penetrate the system and ultimately roll over [10]. Lateral impact loads combined with vertical loads from the vehicle's bumper pushing upward as the front wheel overrode the curb were believed to cause the premature rail rupture. Similar to the modification made to the transition with curb system, when nested W-beam was placed around the location of the omitted post, the system satisfied MASH TL-3 criteria.

Based on the crash testing results of these previous research studies, full-scale crash testing of the standard MGS installed over a 6-in. tall, AASHTO Type B curb was recommended to verify the crashworthiness of the system according to MASH TL-3 evaluation criteria.

1.2 Objective

The objective of this research is to conduct full-scale vehicle crash testing according to MASH 2016 TL-3 conditions on the MGS installed with the face of rail offset 6 in. behind a 6-in. tall AASHTO Type B curb.

1.3 Scope

The research objective was achieved through the completion of several tasks. Design drawings of the MGS installed with the face of the rail located 6 in. behind a 6-in. tall AASHTO Type B curb were developed. The system was constructed at the MwRSF outdoor test site, and two full-scale crash tests were conducted on the system according to MASH 2016 test designation nos. 3-10 and 3-11. Full-scale crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the MGS guardrail installed in combination with a 6-in. tall AASHTO Type B Curb.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as W-beam guardrails, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the FHWA for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [4]. Note that there is no difference between MASH 2009 [3] and MASH 2016 for longitudinal barriers, such as the MGS, except that additional occupant compartment deformation measurements, photographs, and documentation are required by MASH 2016. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 1. Critical impact points for the tests were selected using the plots in Section 2.3.2.1 of MASH 2016.

	Test	The second se	Vehicle	Impact C	onditions	
Test Article	Designation No.	signation Vehicle		Speed (mph)	Angle (deg.)	Evaluation Criteria ¹
Longitudinal	3-10	1100C	2,425	62	25	A,D,F,H,I
Barrier	3-11	2270P	5,000	62	25	A,D,F,H,I

 Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 2.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the W-beam guardrail with curb system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash test documented herein was conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

	А.	Test article should contain and	redirect the vehicle of	or bring the vehicle		
Structural Adequacy		Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.				
	D.	1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupan compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone.				
		2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.				
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.				
Occupant Risk	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
N15K		Occupant Impact Velocity Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s	40 ft/s		
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
		Occupant Ridedown Acceleration Limits				
		Component	Preferred	Maximum		
	15.0 g's	20.49 g's				

Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier

2.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH 2016, foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil dependent system, W6x16 posts are installed near the impact region utilizing the same installation procedures as the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips at post deflections between 5 and 20 in. measured at a height of 25 in. above the ground line. If dynamic testing near the system is not desired, MASH 2016 permits a static test to be conducted instead and compared against the results of a previously established baseline test. In this situation, the soil must provide a resistance of at least 90% of the static baseline test at deflections of 5, 10, and 15 in. Further details can be found in Appendix B of MASH 2016.

3 DESIGN DETAILS

3.1 Test No. MGSC-7

The test installation for test no. MGSC-7 consisted of $182 \text{ ft} - 3\frac{1}{2}$ in. of standard W-beam guardrail positioned 6 in. behind a 6-in. tall curb. Installation details are shown in Figures 1 through 13, and photographs of the test installations are shown in Figures 14 and 15. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

The nominal top rail mounting height for the system was 31 in. However, to evaluate small car underride and snag on the guardrail posts, the guardrail for test no. MGSC-7 was installed at a height of 32 in. above the roadway surface. The 12-gauge W-beam rail segments were spliced in an orientation to reduce vehicle snag potential and supported by twenty-nine guardrail posts. Post nos. 3 through 27 were 72-in. long, galvanized, ASTM A992, W6x8.5 steel sections spaced at 75 in. on center. Because the rail height was increased 1 in. over nominal, the posts were embedded 45 in. into the crushed limestone soil instead of the nominal 46 in. embedment depth. Southern Yellow Pine wood blockouts that measured 6 in. x 12 in. x 14¼ in. were used to offset the guardrail from the face of the posts.

The 6-in. tall, AASHTO Type B curb extended between post nos. 9 and 20 and was located with the center of the face of the curb 6 in. in front of the face edge of the W-beam. Soil backfill was added behind the curb such that the ground line was flush with the top of the curb. The curb was poured with a 4-ft wide by 4-in. thick approach slab. All concrete components had a minimum compressive strength of 4,000 psi. The curb was reinforced by a single #4 rebar.

The upstream and downstream ends of the guardrail installation were configured with a non-proprietary end anchorage system [11-14]. The guardrail anchorage system had a comparable strength to other crashworthy end terminals. The anchorage system consisted of timber posts, foundation tubes, anchor cables, bearing plates, rail brackets, and channel struts.

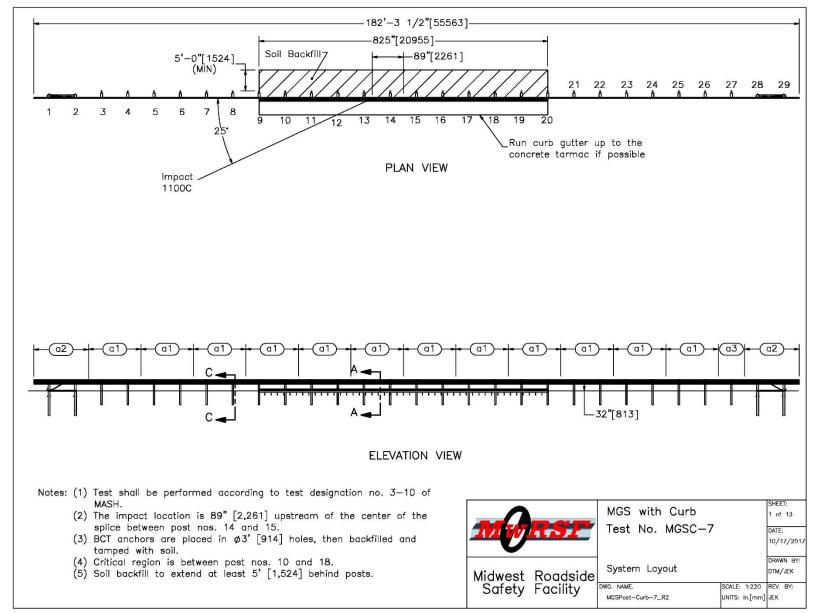


Figure 1. System Layout, Test No. MGSC-7

9

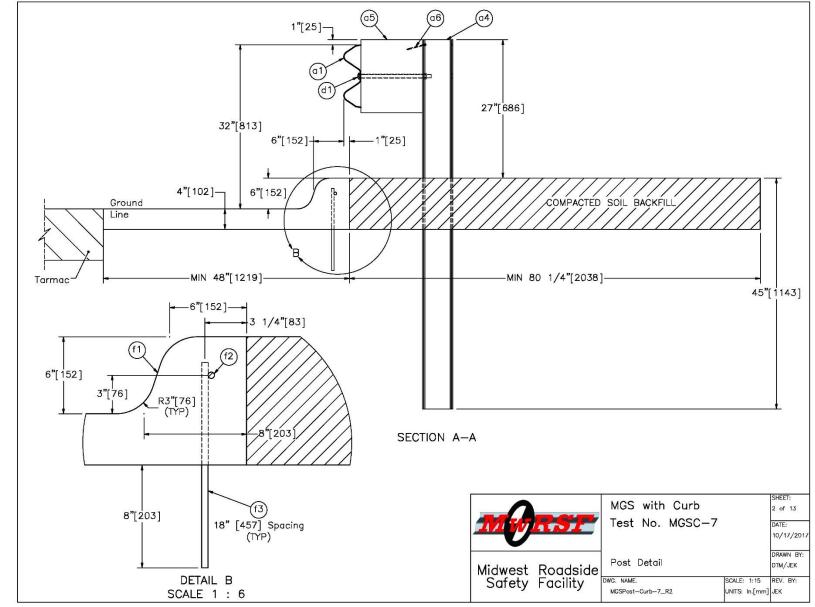


Figure 2. Post Detail, Test No. MGSC-7

7

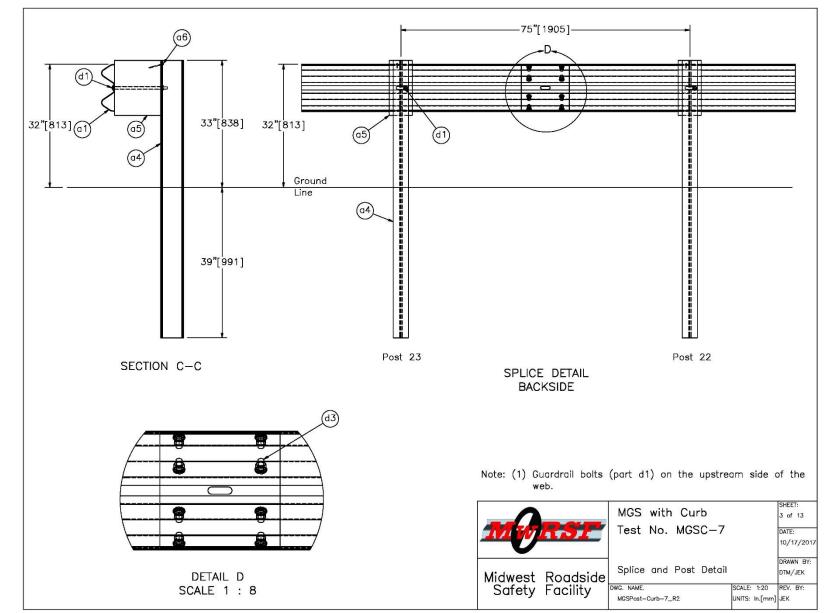


Figure 3. Splice and Post Detail, Test No. MGSC-7

 ∞

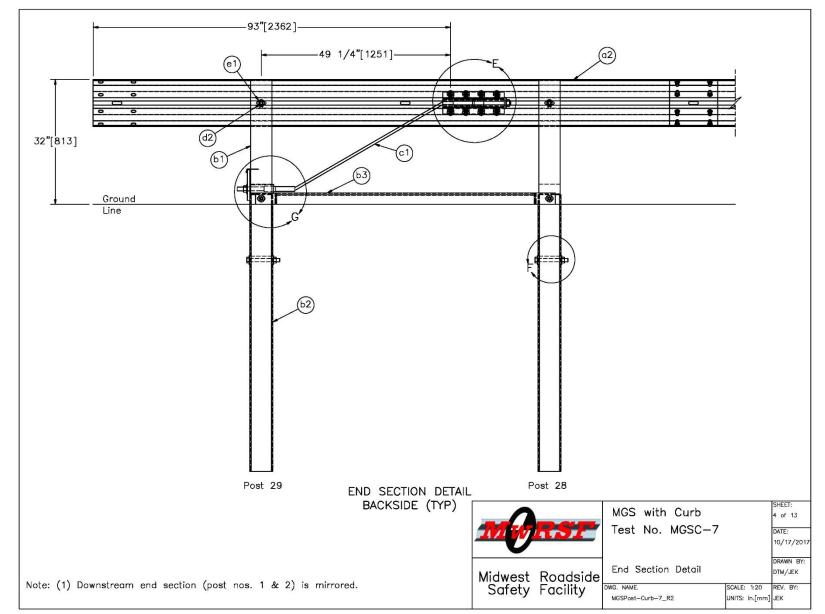


Figure 4. End Section Detail, Test No. MGSC-7

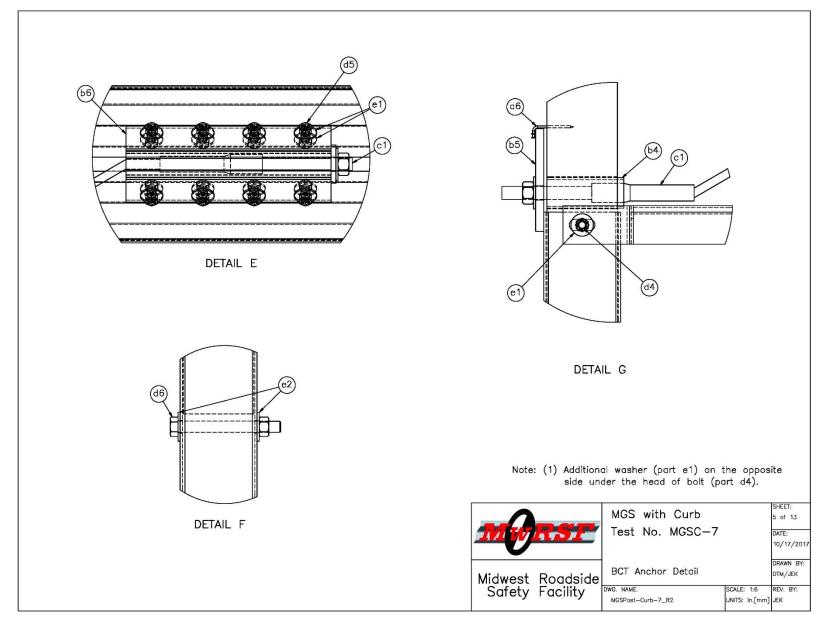


Figure 5. BCT Anchor Detail, Test No. MGSC-7

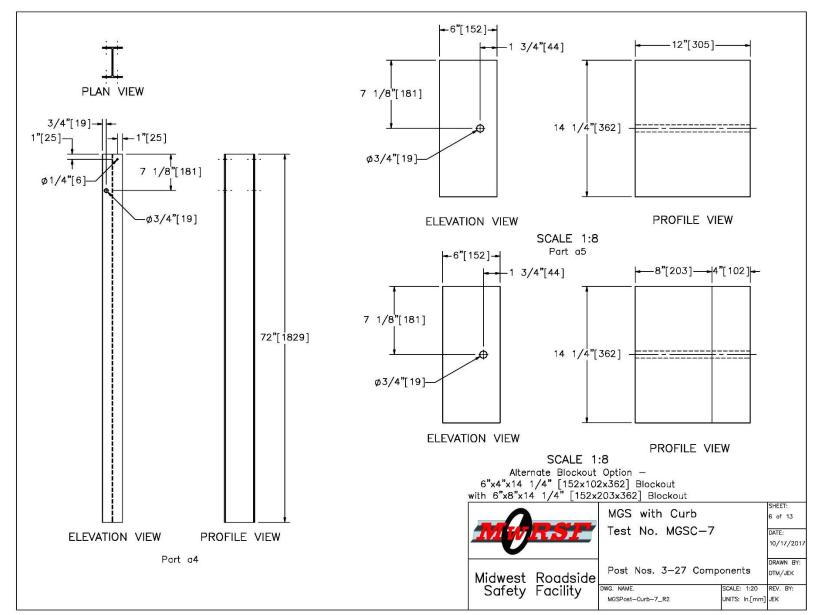


Figure 6. Post Nos. 3 through 27 Components, Test No. MGSC-7

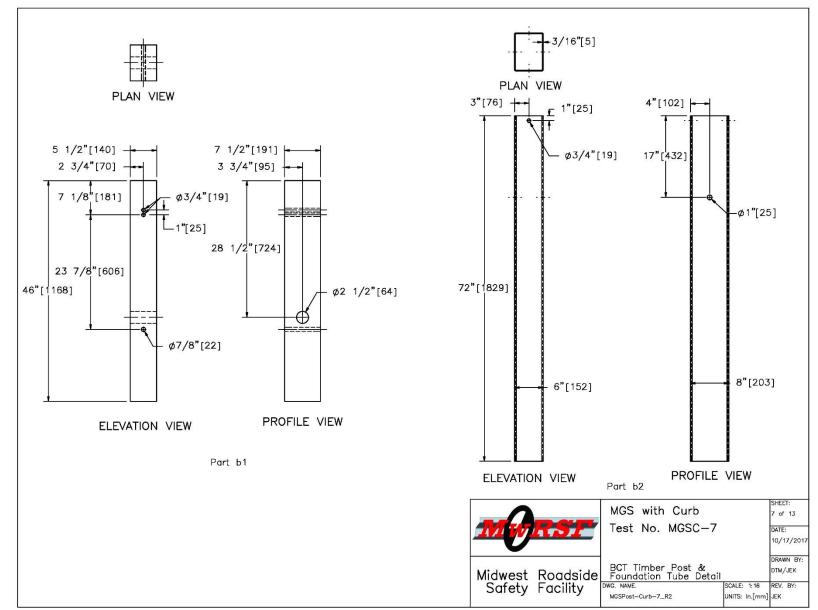


Figure 7. BCT Timber Post and Foundation Tube Detail, Test No. MGSC-7

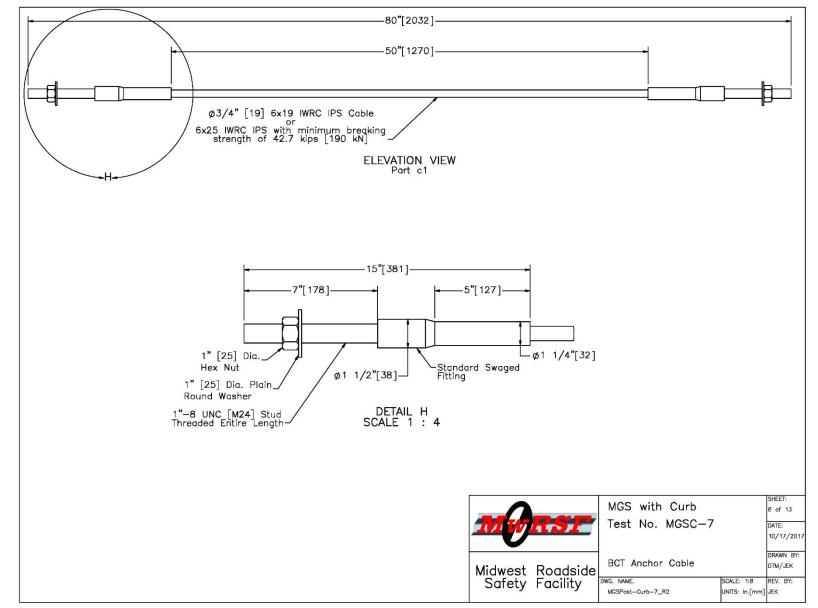


Figure 8. BCT Anchor Cable, Test No. MGSC-7

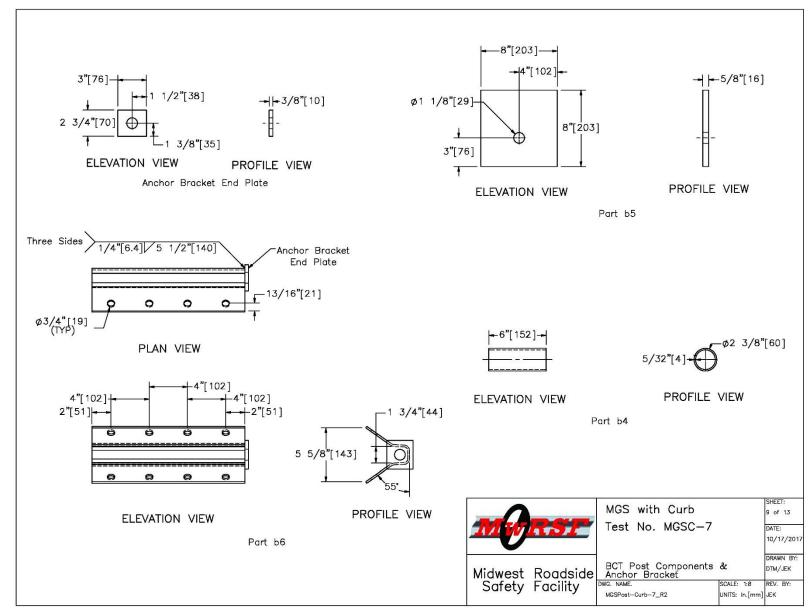


Figure 9. BCT Post Components and Anchor Bracket, Test No. MGSC-7

14

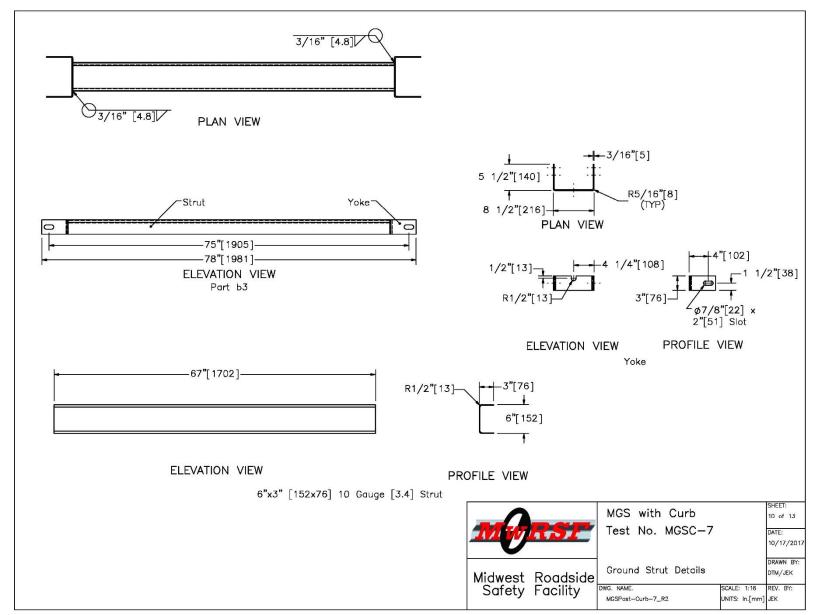


Figure 10. Ground Strut Details, Test No. MGSC-7

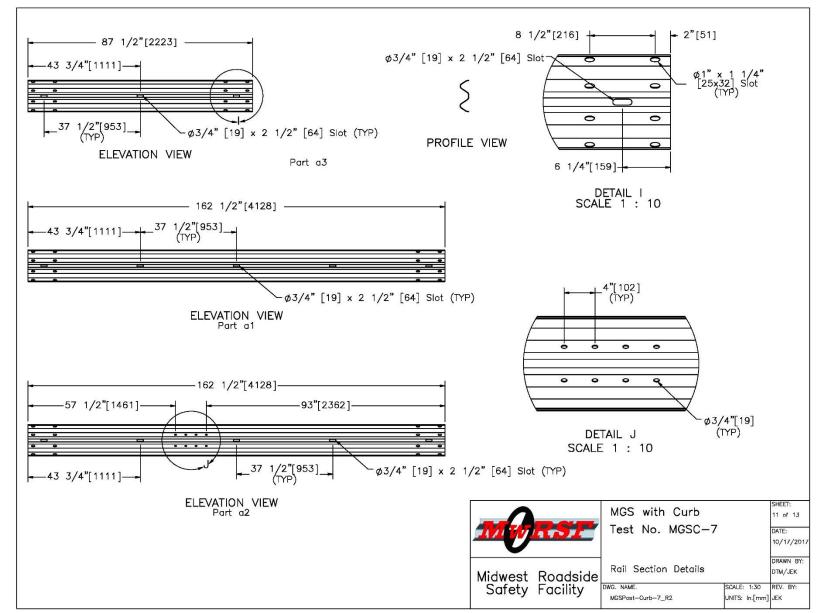


Figure 11. Rail Section Details, Test No. MGSC-7

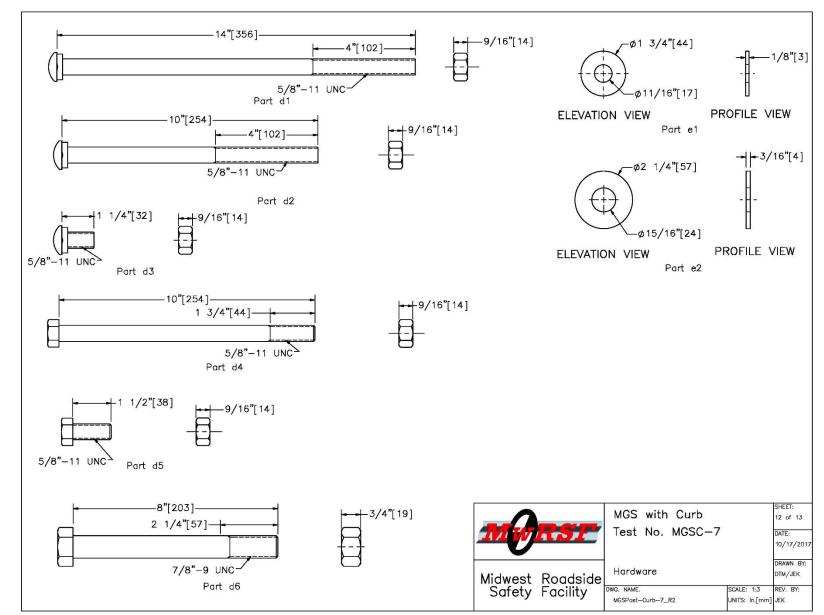


Figure 12. Hardware, Test No. MGSC-7

17

ltem No.	QTY.	Description	Material Specification	Galvanization Specification	Hardware Guide
a1	12	12'-6" [3,810] 12 gauge [2.7] W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a2	2	12'-6" [3,810] 12 gauge [2.7] W-Beam MGS End Section	AASHTO M180	ASTM A123 or A653	RWM14a
aЗ	1	6'-3" [1,905] 12 gauge [2.7] W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a4	25	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" Long [1,829] Steel Post	ASTM A992 Min. 50 ksi [345 MPa]	ASTM A123	PWE06
a5	25	6"x12"x14 1/4" [152x305x368] Timber Blockout for Steel Posts	SYP Grade No.1 or better	-	PDB10a
a6	25	16D Double Head Nail		-	—
b1	4	BCT Timber Post – MGS Height	SYP Grade No. 1 or better (No knots 18" [457] above or below ground tension face)	-	PDF01
b2	4	72" [1829] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
b3	2	Ground Strut Assembly	ASTM A36	ASTM A123	PFP02
b4	2	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
Ь5	2	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
b6	2	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
c1	2	BCT Anchor Cable	-	_	FCA01
d1	25	5/8" [16] Dia. UNC, 14" [356] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB06
d2	4	5/8" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB03
d3	112	5/8" [16] Dia. UNC, 1 1/4" [32] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB01
d4	4	5/8" [16] Dia. UNC, 10" [254] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
d5	16	5/8" [16] Dia. UNC, 1 1/2" [38] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
d6	4	7/8" [22] Dia. UNC, 8" [203] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	-
e1	44	5/8" [16] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a
e2	8	7/8" [22] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	-
f1	1	Curb	f'c = 4,000 psi [27.6 MPa]	-	-
f2	1	#4 Rebar 819" [20,803] Long	ASTM A615 Gr. 60	-	-
f3	45	#4 Rebar 16" [406] Long	ASTM A615 Gr. 60	-	—
			•	•	
				MGS with Curb Test No. MGSC-7	SHEET: 13 of 13 DATE: 10/17/2017 DRAWN BY:
			Midwes Safet	st Roadside y Facility Bill of Materials DWG: NAME: MGSPost-Curb-7_R2 UNITS: Ir	DTM/JEK

Figure 13. Bill of Materials, Test No. MGSC-7

Figure 14. Test Installation Photographs, Test No. MGSC-7



Figure 15. Test Installation Photographs, Test No. MGSC-7 20

3.2 Test No. MGSC-8

The test article for test no. MGSC-8 was nearly identical to that of test no. MGSC-7. The only differences were that in test no. MGSC-8 the rail was mounted at its nominal 31-in. height and the posts were at their nominal embedment depth of 46 in. All components remained identical between the two test installations. Installation details for test no. MGSC-8 are shown in Figures 16 through 28, and photographs of the test installations are shown in Figures 29 and 30. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

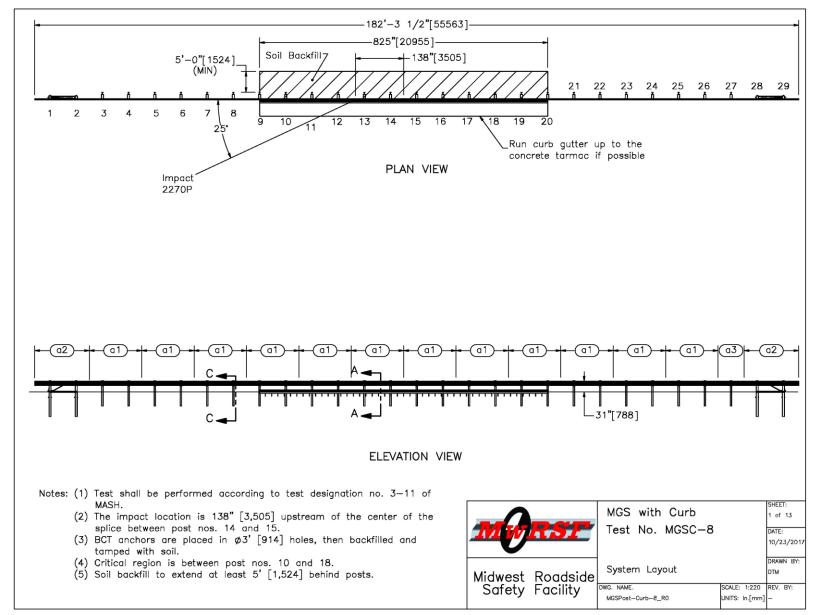


Figure 16. System Layout, Test No. MGSC-8

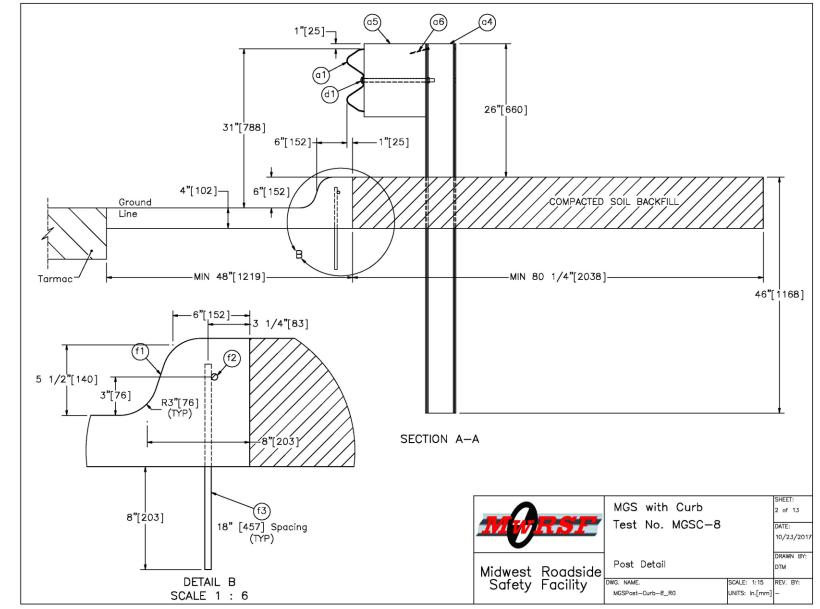


Figure 17. Post Detail, Test No. MGSC-8

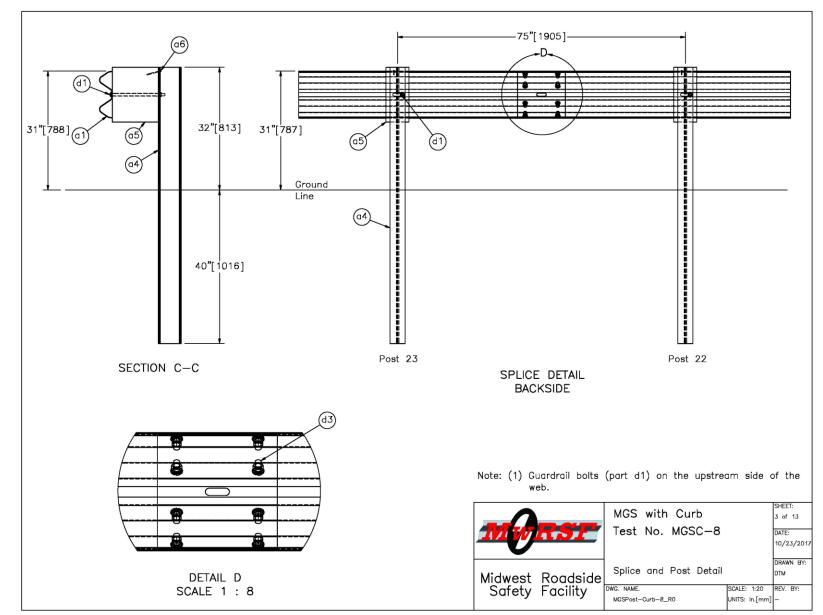


Figure 18. Splice and Post Detail, Test No. MGSC-8

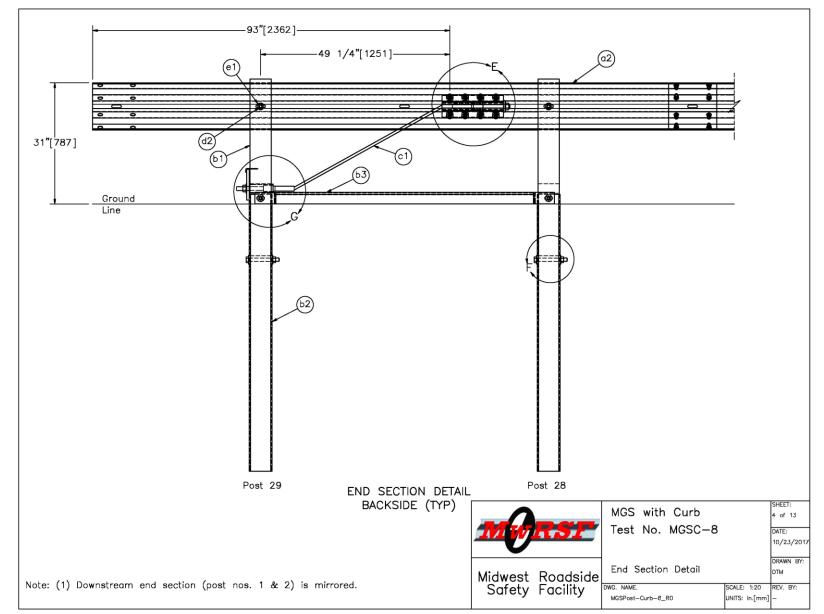


Figure 19. End Section Detail, Test No. MGSC-8

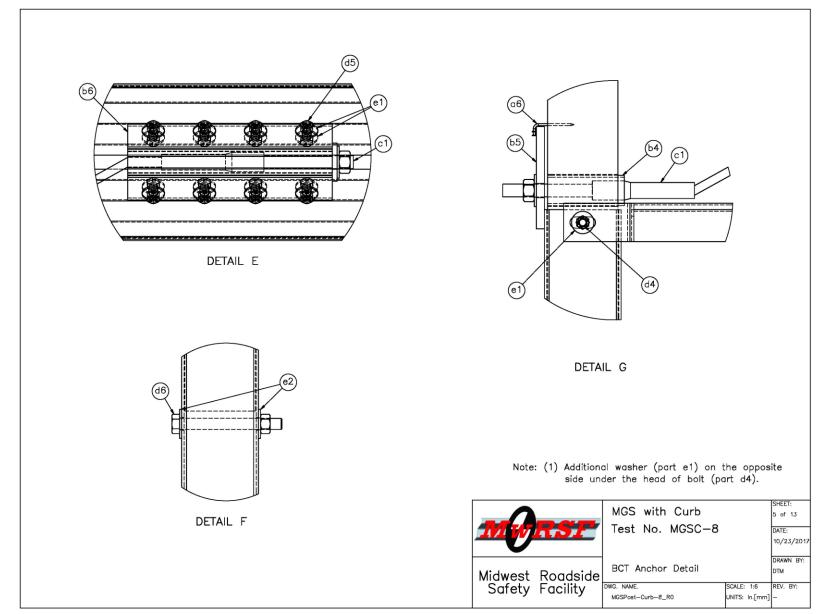


Figure 20. BCT Anchor Detail, Test No. MGSC-8

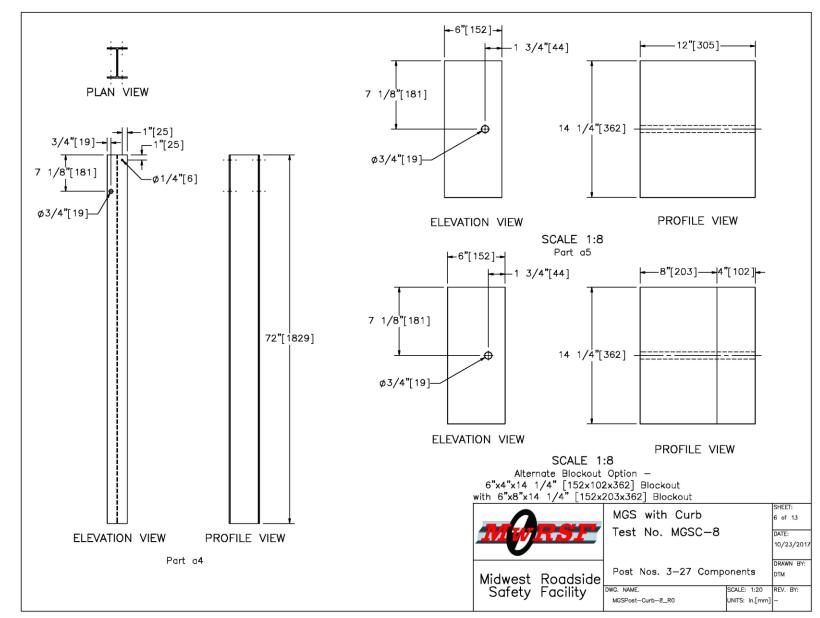


Figure 21. Post Nos. 3 through 27 Components, Test No. MGSC-8

27

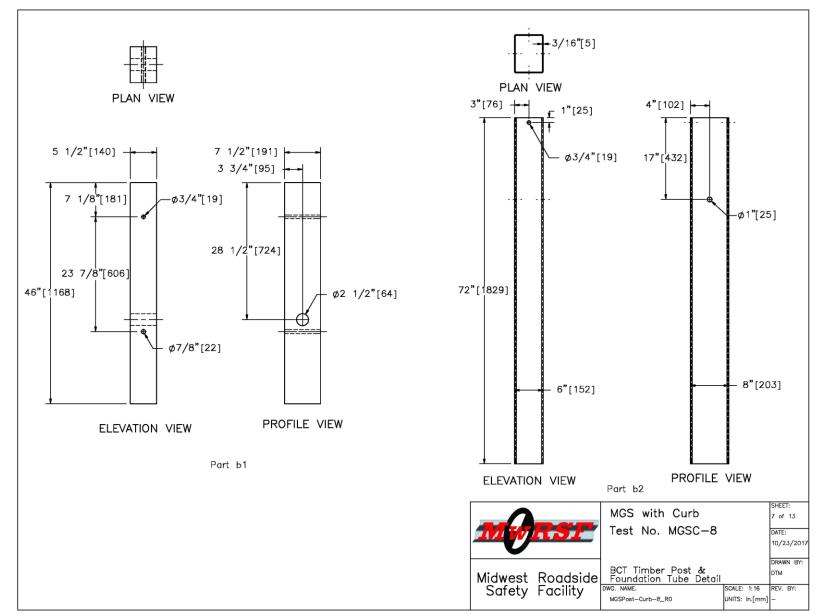


Figure 22. BCT Timber Post and Foundation Tube Detail, Test No. MGSC-8

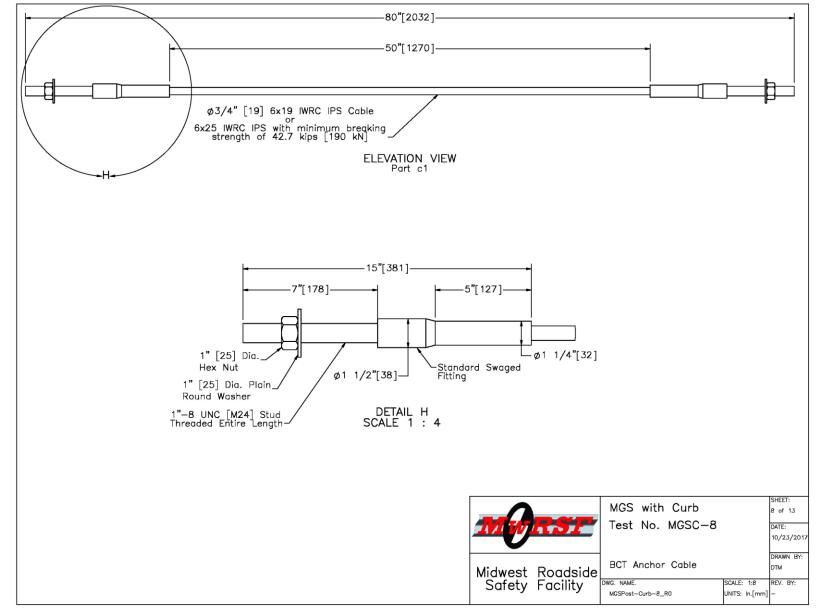


Figure 23. BCT Anchor Cable, Test No. MGSC-8

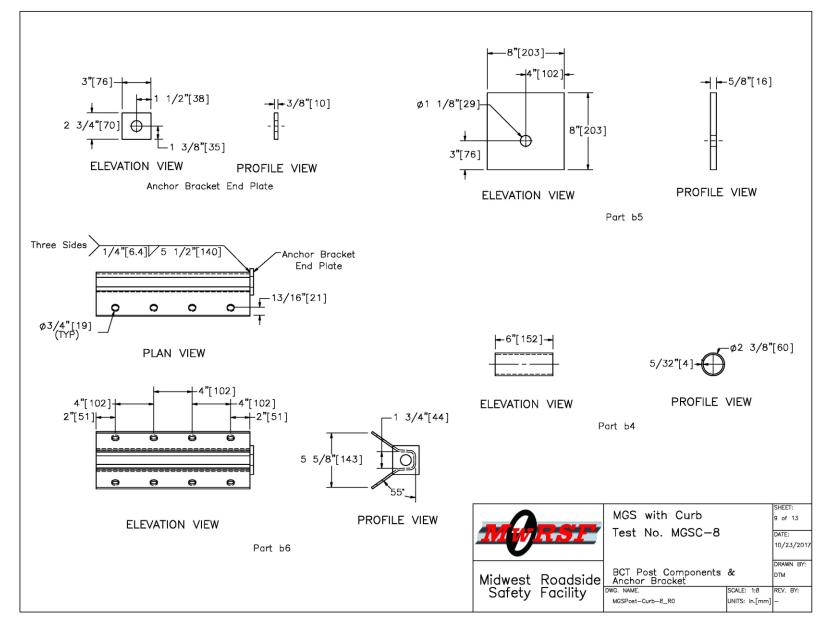


Figure 24. BCT Post Components and Anchor Bracket, Test No. MGSC-8

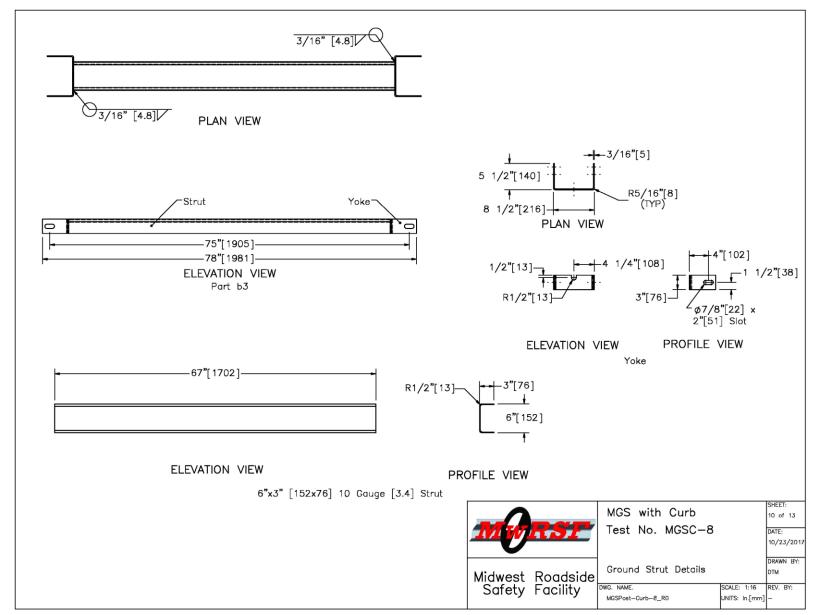


Figure 25. Ground Strut Details, Test No. MGSC-8

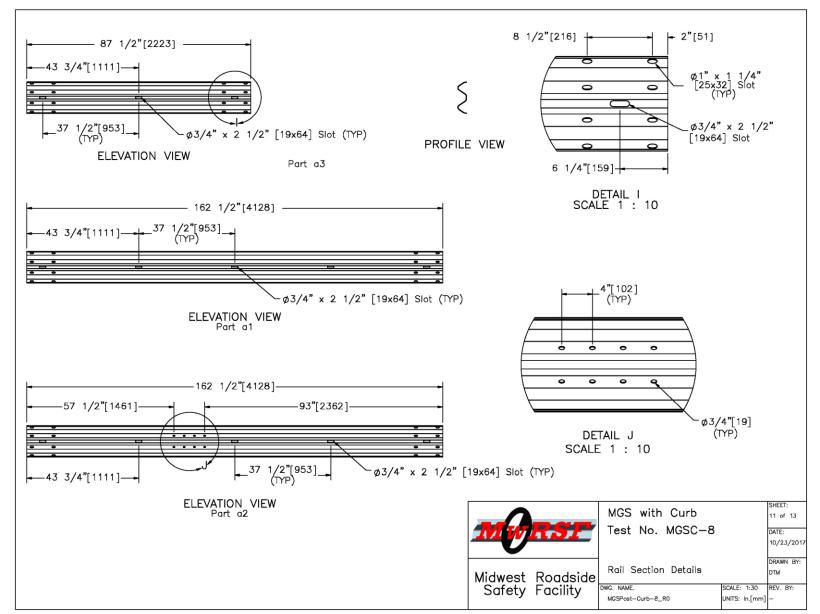


Figure 26. Rail Section Details, Test No. MGSC-8

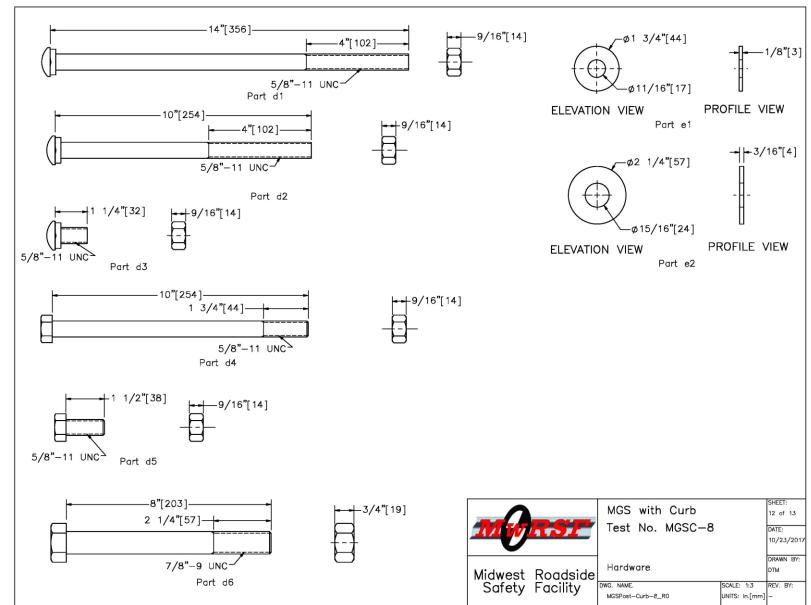


Figure 27. Hardware, Test No. MGSC-8

33

No.	QTY.	Description	Material Specification	Galvanization Specification	Hardware Guide
a1	12	12'-6" [3,810] 12 gauge [2.7] W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
۵2	2	12'-6" [3,810] 12 gauge [2.7] W-Beam MGS End Section	AASHTO M180	ASTM A123 or A653	RWM14a
a3	1	6'-3" [1,905] 12 gauge [2.7] W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a4	25	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" Long [1,829] Steel Post	ASTM A992 Min. 50 ksi [345 MPa]	ASTM A123	PWE06
a5	25	6"x12"x14 1/4" [152x305x368] Timber Blockout for Steel Posts	SYP Grade No.1 or better	_	PDB10a
a6	25	16D Double Head Nail	_	-	-
Ь1	4	BCT Timber Post – MGS Height	SYP Grade No. 1 or better (No knots 18" [457] above or below ground tension face)	-	PDF01
b2	4	72" [1829] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
b3	2	Ground Strut Assembly	ASTM A36	ASTM A123	PFP02
b4	2	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
b5	2	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
b6	2	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
c1	2	BCT Anchor Cable	_	_	FCA01
d1	25	5/8" [16] Dia. UNC, 14" [356] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB06
d2	4	5/8" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB03
d3	112	5/8" [16] Dia. UNC, 1 1/4" [32] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB01
d4	4	5/8" [16] Dia. UNC, 10" [254] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
d5	16	5/8" [16] Dia. UNC, 1 1/2" [38] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
d6	4	7/8" [22] Dia. UNC, 8" [203] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	-
e1	44	5/8" [16] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a
e2	8	7/8" [22] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	-
f1	1	Curb	f'c = 4,000 psi [27.6 MPa]	_	-
f2	1	#4 Rebar 819" [20,803] Long	ASTM A615 Gr. 60	-	-
f3	45	#4 Rebar 16" [406] Long	ASTM A615 Gr. 60	-	-
				MGS with Curb Test No. MGSC-8	SHEET: 13 of 13 DATE: 10/23/2013 DRAWN BY:
				t Roadside y Facility MGSPost-Curb-8_R0	DTM

REV. BY: SCALE: None UNITS: In.[mm]

August 27, 2020 MwRSF Report No. TRP-03-390-20

Figure 28. Bill of Materials, Test No. MGSC-8

Figure 29. Test Installation Photographs, Test No. MGSC-8

Figure 30. Test Installation Photographs, Test No. MGSC-8

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicles. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicles. The test vehicles were released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [15] was used to steer the test vehicles. A guide flag, attached to the right-front wheel and the guide cable for each test, was sheared off before impact with the barrier system. The ³/₈-in. diameter guide cable was tensioned to approximately 3,500 lb and supported both laterally and vertically every 100 ft by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicles were towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicles

For test no. MGSC-7, a 2009 Hyundai Accent was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,448 lb, 2,423 lb, and 2,584 lb, respectively. The test vehicle is shown in Figures 31 and 32, and vehicle dimensions are shown in Figure 33.

MASH 2016 requires test vehicles used in crash testing to be no more than six model years old. A 2009 model was used for this test because the vehicle geometry of newer models did not comply with recommended vehicle dimension ranges specified in Table 4.1 of MASH 2016. The use of older test vehicles due to recent small car vehicle properties falling outside of MASH 2016 recommendations was allowed by FHWA and AASHTO in MASH implementation guidance dated May of 2018 [16].

For test no. MGSC-8, a 2010 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,092 lb, 5,000 lb, and 5,162 lb, respectively. The test vehicle is shown in Figures 34 and 35, and vehicle dimensions are shown in Figure 36. Pre-test photographs of the vehicle's interior floorboards were not available.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. For test no. MGSC-7, the vertical component of the c.g. for the 1100C vehicle was determined utilizing a procedure published by SAE [17]. The location of the final c.g. is shown in Figures 33 and 37. For test no. MGSC-8, the Suspension Method [18] was used to determine the vertical component of the c.g. of the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g.

location for the test inertial condition. The location of the final c.g. is shown in Figures 36 and 38. For both tests, data used to calculate the location of the c.g. and ballast information are shown in Appendix B.

Square, black- and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 37 and 38. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicles.

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted at the center and the front-right center of the vehicles' dashes for test nos. MGSC-7 and MGSC-8, respectively. The bulb was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A remote-controlled brake system was installed in the test vehicles so the vehicles could be brought safely to a stop after the test.

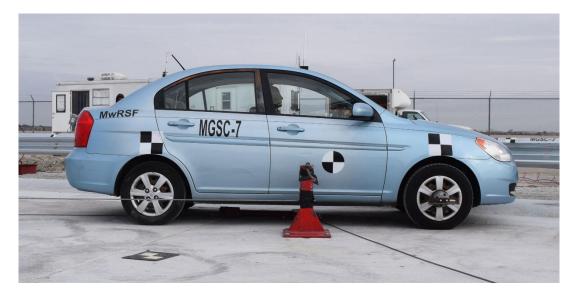


Figure 31. Test Vehicle, Test No. MGSC-7

Figure 32. Test Vehicle's Undercarriage and Interior Floorboards, Test No. MGSC-7

Date:	11/7/2017	т	est Number: _	MGSC-7	VI	N: KMHCN4	AC4AU46	0931
Year:	2009		Make:	Hyundai	Mod	el: A	ccent	
Tire Size:	P185/65 R14	Tire Inflation	on Pressure:	32 Psi	Odomete	ər:1	42110	
					Vehicle	e Geometry - in. (Inges listed below		
				<u>Q</u> vehicle	c: <u>168 1/</u> t <u>169±</u> e: 98 1/4	8 (1650±75) 2 (4280) 8 (4300±200) 4 (2496) (2500±125)	01-16 12 12 12 1	(922)
					i: <u>15</u> 1/:	2 (394) j:	21 1/2	(546)
		B			k: <u>15 3/4</u>	<mark>∔ (400)</mark> I:_	22 3/4	(578)
				I	b m: <u>57 1/2</u>	2 (1461) n:	57 1/2	(1461)
		s					4	(102)
-	f h	е	d √W _{rear}		q: <u>23 1/</u> 2	2 (597) r:	15 1/2	(394)
-	↓ W _{fron}	C	∨ "rear		s: 11 1//	2 (292) t:	64 1/8	(1629)
Gross Static L	ibution lb (kg) F <u>808 (367)</u> R <u>528 (239)</u>	RF800 RR448	(363) (203)		т	op of radiator core support: Wheel Center Height (Front): Wheel Center	29 10 3/4	(737)
Weights						Height (Rear): Wheel Well	10 3/4	(273)
lb (kg)	Curb	Test In	ertial	Gross Stat	tic	Clearance (Front): Wheel Well	25	(635)
W-front	1567 (711)	1528	(693)	1608 (7	29)	Clearance (Rear):	24 1/2	(622)
W-rear	881 (400)	895	(406)	976 (4	43)	Bottom Frame Height (Front):	6 1/4	(159)
W-total	2448 (1110	the second secon	(1099)	2584 (1* 2585±55 (1175:	172)	Bottom Frame Height (Rear):	15 1/4	(387)
		2420±55 (*	100±25)	2000±00 (1170	50)	Engine Type:	4cyl.	Gas
GVWR Ratings	lb	Dummy D	ata			Engine Size:	1.6	SL
Front:	1918		Type:	Hybrid II	Trar	smission Type:	Autor	natic
Rear:	1874		Mass:	161 lb		Drive Type:	FV	/D
Total:	3638	S	eat Position:	Driver				
Note any c	Note any damage prior to test:NONE							

Figure 33. Vehicle Dimensions, Test No. MGSC-7

Figure 34. Test Vehicle, Test No. MGSC-8

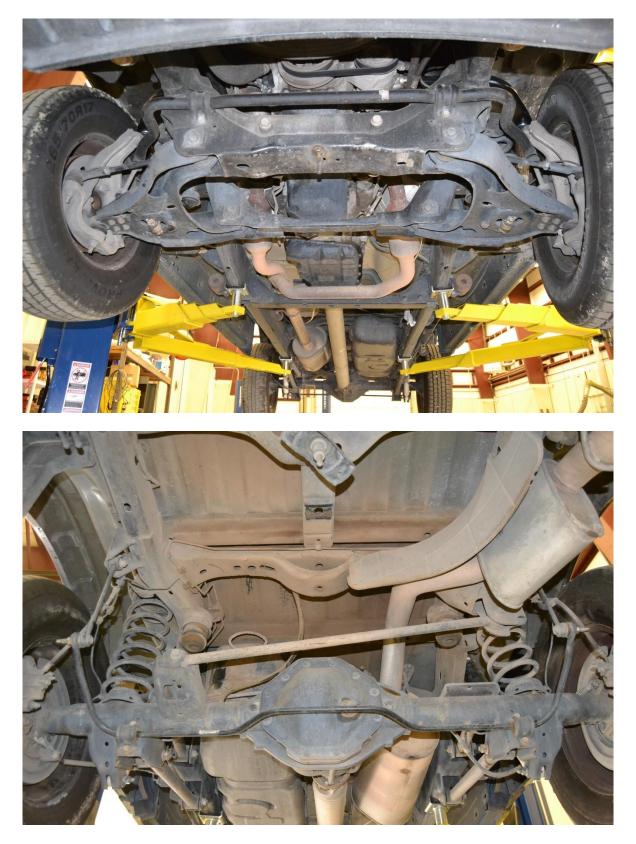


Figure 35. Test Vehicle's Undercarriage, Test No. MGSC-8

Date:	7/28/20	017	-1	Test Name:	MG	SC-8	VIN No:	1D7RB1	GT8AS11	8297
Year:	2010	0	-	Make:	Do	dge	Model:	Ra	am 1500	
Tire Size:	P265/70)R17	Tire Infla	ation Pressure:	40	Psi	Odometer:	2	280647	
t Wheel			9		Mwheel		Vehicle G Target Range a: <u>73</u> 78±2 (19	(1854) b:	(mm) 74 3/4	(1899)
Track					Track	Ĩ	c: 229 1/4 237±13 (6	(5823) d:	48 1/5	(1224)
<u>↓ ⊥_</u> () Te	st Inertial	с.м.—		[<u> </u>	e: 140 1/2 148±12 (3	(3569) f:	40 3/8 39±3 (1	(1026) 000±75)
			\	- _ q +	-TIRE DIA		g: 28 1/16 min: 28		60 63±4 (15	(1524)
1		K	100				i:13 3/8		25 3/8	(645)
b l			- Or			ſ	k: <u>21 1/8</u>	(537) I:	28 3/4	(730)
	-(C			=(0)-		Ĺ	m: 67 67±1.5 (1		67 5/8 67±1.5 (1	(1718) 1700±38)
				h ———	1		o: <u>46 1/8</u> 43±4 (17		3 1/2	(89)
-		7 Wrear	e ——	Wfront f-	-		q: <u>31 3/4</u>	(806) r:	18 1/2	(470)
ŀ	· · · ·		— c —	•			s: <u>15 1/8</u>	(384) t:	78 7/8	(2003)
Mass Distribu	ution lb (kg)							Wheel Center Height (Front):		(375)
Gross Static	LF_1524	(691)	RF 1444	(655)				Wheel Center Height (Rear):	15	(381)
	LR 1080	(490)	RR 1114	(505)			Cle	Wheel Well earance (Front):	35 7/8	(911)
							СІ	Wheel Well earance (Rear):	38 3/8	(975)
Weights Ib (kg)	Cı	urb	Test	Inertial	Gross	Static		Bottom Frame Height (Front):	18 5/8	(473)
W-front	2923	(1326)	2864	(1299)	2968	(1346)		Bottom Frame Height (Rear):	26 1/8	(664)
W-rear	2169	(984)	2136	(969)	2194	(995)		Engine Type:	Gas	oline
W-total	5092	(2310)	5000	(2268) 0 (2270±50)	5162	(2341) (2343±50)		Engine Size:	5.71	_ V8
			0000211	0 (2270100)	01002110	(2040100)	Transn	nission Type:	Auto	matic
GVWR Rating	ys Ib		Dummy	Data				Drive Type:	RV	VD
Front _	3700	-9		Type:	Hybrid	1 11		Cab Style:	Quad	l Cab
Rear	3900	-0		Mass:	162 I	b		Bed Length:	7	6"
Total _	6700	-	Sea	t Position:	Drive	er				
Note an	y damage pri	or to test:	Slightly	/ dented and di	scolored	front right	fender. Minoi	r scraping on	various pa	arts

Figure 36. Vehicle Dimensions, Test No. MGSC-8

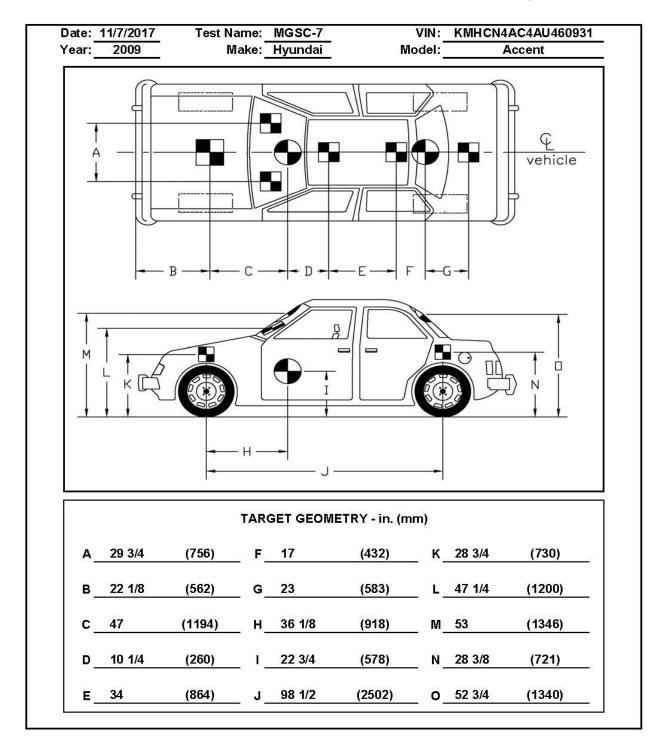


Figure 37. Target Geometry, Test No. MGSC-7

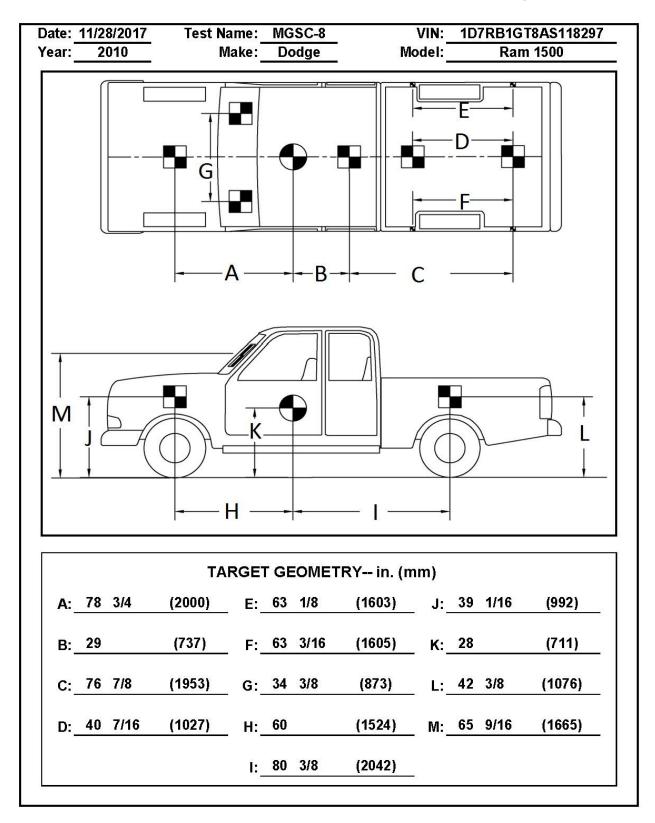


Figure 38. Target Geometry, Test No. MGSC-8

4.4 Simulated Occupant

For test nos. MGSC-7 and MGSC-8, a Hybrid II 50th-Percentile, Adult Male Dummy equipped with footwear was placed in the left-front seat of the test vehicles with the seat belt fastened. The simulated occupant had a final weight of 161 lb for test no. MGSC-7 and 162 lb for test no. MGSC-8. As recommended by MASH 2016, the simulated occupant weight was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometer systems were mounted near the c.g. of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [19].

The SLICE-1 and SLICE-2 units were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-1 unit was designated as the primary system for test no. MGSC-7, and the SLICE-2 unit was designated as the primary system for test no. MGSC-8. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of \pm 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicles before impact. Five retroreflective targets, spaced at approximately 18-in. intervals, were applied to the sides of the vehicles. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Six AOS high-speed digital video cameras and thirteen GoPro digital video cameras were utilized to film test no. MGSC-7. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 39.

Six AOS high-speed digital video cameras and twelve GoPro digital video cameras were utilized to film test no. MGSC-8. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 40.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and posttest conditions for the test.

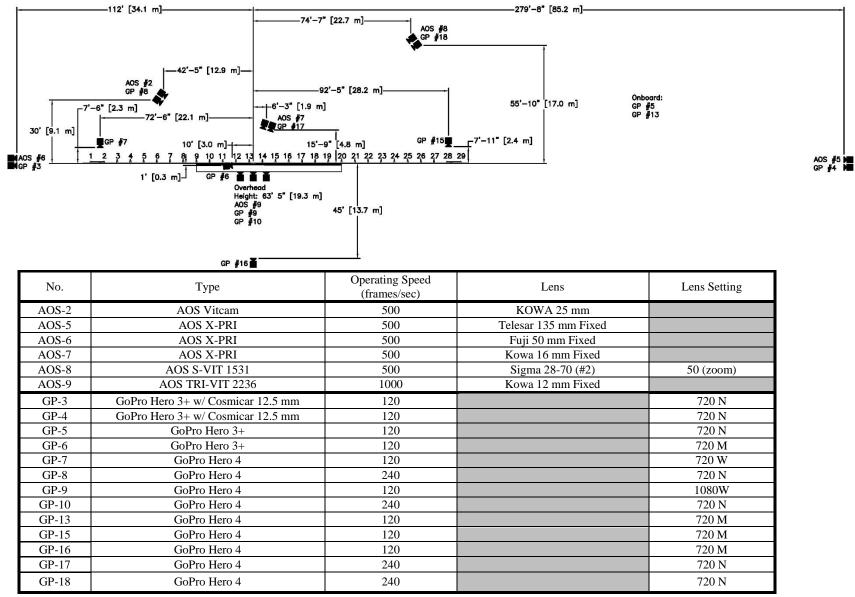


Figure 39. Camera Locations, Speeds, and Lens Settings, Test No. MGSC-7

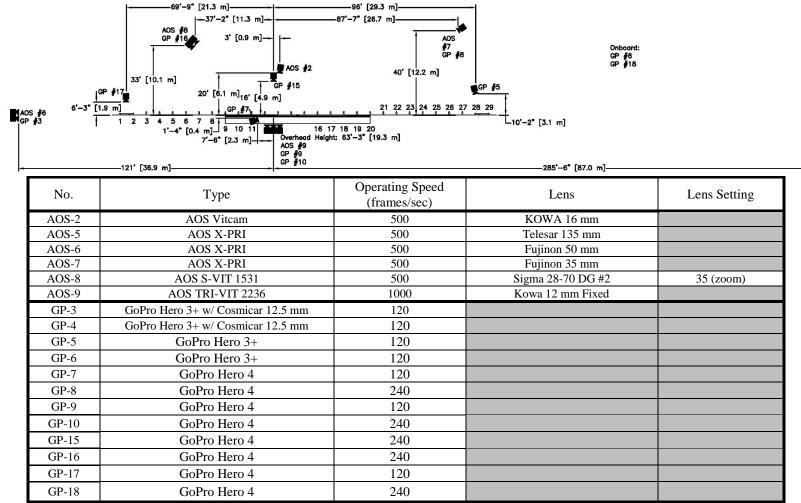


Figure 40. Camera Locations, Speeds, and Lens Settings, Test No. MGSC-8

50

August 27, 2020 MwRSF Report No. TRP-03-390-20

5 FULL-SCALE CRASH TEST NO. MGSC-7

5.1 Static Soil Test

Before full-scale crash test no. MGSC-7 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

5.2 Weather Conditions

Test no. MGSC-7 was conducted on November 7, 2017 at approximately 2:00 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 3.

Temperature	43° F
Humidity	37%
Wind Speed	9 mph
Wind Direction	40° from True North
Sky Conditions	Scattered
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.01 in.

Table 3. Weather Conditions, Test No. MGSC-7

5.3 Test Description

The critical impact point for test no. MGSC-7 was selected using the CIP plots found in Section 2.3 of MASH. The critical impact point was determined to be 89 in. upstream from the splice located between post nos. 14 and 15, as shown in Figure 41.

The 2,423-lb small car impacted the MGS 2.7 in. upstream from targeted impact point at a speed of 63.6 mph and at an angle of 25.0 degrees. The vehicle was contained and redirected with exit speed and angle of 21.3 mph and -10.5 degrees, respectively. The vehicle remained stable throughout the impact event with maximum roll and pitch angular displacements of 11 degrees and -5 degrees, respectively. During the test, the left-front corner of the vehicle and the left-front wheel extended below the W-beam rail and snagged on three of the guardrail support posts, which caused the vehicle to yaw back toward the barrier after reaching a maximum yaw displacement of 19.7 degrees. However, the snag was not severe enough to cause excessive decelerations. Additionally, the combined lateral and vertical loads being applied to the rail as the front end of the vehicle extended below the rail caused a partial tear in the guardrail at the splice between post nos. 14 and 15, which extended from the bottom of the W-beam rail to the middle of the rail. After exiting the system, the vehicle continued to yaw toward the barrier, and the vehicle's front bumper

contacted the MGS for a second time. The vehicle ultimately came to rest 50 ft – 3 in. downstream from impact and 10 ft – 8 in. laterally in front of the system after brakes were applied.

A detailed description of the sequential impact events is contained in Table 4. Sequential photographs are shown in Figures 42 through 44. Documentary photographs of the crash test are shown in Figures 45 through 47. The vehicle trajectory and final position are shown in Figure 48.

TIME (sec)	EVENT
-0.004	Vehicle's left-front tire contacted curb.
0.004	Vehicle's front bumper contacted rail upstream from the splice located between post nos. 14 and 15
0.004	Vehicle's front bumper deformed and cracked. Vehicle's left headlight contacted rail.
0.010	Post no. 13 deflected backward. Vehicle's left fender contacted rail.
0.016	Vehicle's hood contacted rail.
0.018	Post no. 14 deflected backward.
0.040	Vehicle's left-front door contacted rail.
0.042	Vehicle's front bumper contacted blockout no. 14.
0.046	Vehicle's front bumper contacted post no. 14. Vehicle began to yaw away from the barrier.
0.048	Post no. 14 twisted counterclockwise.
0.050	Vehicle's grille disengaged. Blockout no. 14 fractured.
0.068	Vehicle's left-front tire contacted post no. 14. Rail disengaged from bolt at post no. 14.
0.072	Blockout disengaged from post no. 14.
0.080	Vehicle's left-front door deformed.
0.084	Vehicle's left-rear tire contacted curb.
0.102	Post no. 15 twisted clockwise.
0.108	Vehicle's front bumper contacted post no. 15. Post no. 15 bent downstream.
0.124	Vehicle's left-rear tire became airborne.
0.126	Blockout disengaged from post no. 15.
0.198	Vehicle's front bumper contacted post no. 16.
0.224	Rail disengaged from bolt at post no. 16.
0.228	Blockout disengaged from post no. 16.
0.234	Blockout no. 16 fractured.
0.338	Blockout fractured and disengaged from post no. 17.

 Table 4. Sequential Description of Impact Events, Test No. MGSC-7

TIME (sec)	EVENT
0.342	Rail disengaged from bolt at post no. 17. Vehicle's front frame contacted post no. 17.
0.416	Vehicle reached a maximum yaw displacement of 19.7 degrees and began to yaw toward the barrier.
0.662	Vehicle exited the system with a speed of 21.3 mph, a c.g. angle of -10.5 degrees, and a heading angle of 25.0 degrees.
0.686	Vehicle's left-rear tire regained contact with ground.
0.976	Vehicle's front bumper contacted the rail for a second time as vehicle continued to yaw toward the barrier.
1.200	Vehicle's right headlight contacted rail.
1.650	Vehicle exited the system for a second time.

Table 5. Sequential Description of Impact Events, Test No. MGSC-7, Cont.

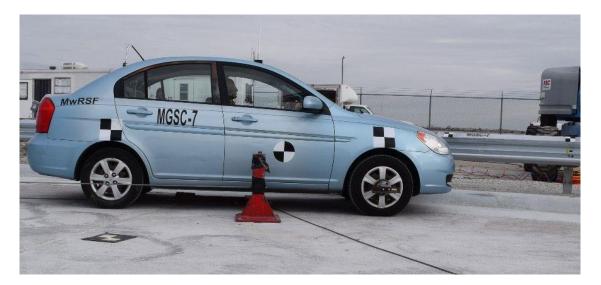
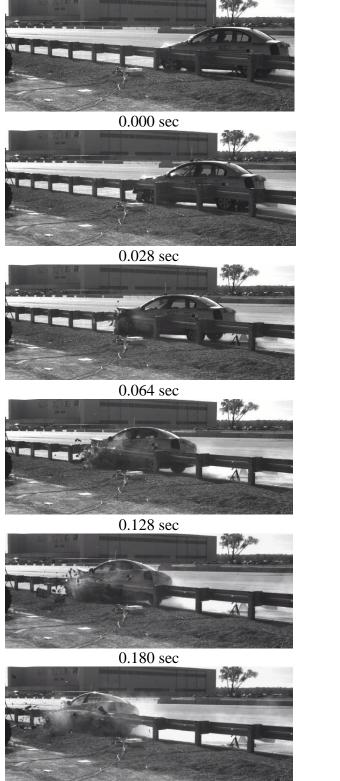



Figure 41. Impact Location, Test No. MGSC-7

0.300 sec

0.000 sec 0.028 sec 0.064 sec 0.128 sec 0.180 sec .1

0.300 sec

Figure 42. Sequential Photographs, Test No. MGSC-7

0.000 sec

0.058 sec

0.232

0.414 sec

0.678 sec

1.418 sec

0.000 sec

0.058 sec

0.232 sec

0.414 sec

0.678 sec

1.418 sec

Figure 43. Sequential Photographs, Test No. MGSC-7

0.000 sec

0.030 sec

0.090 sec

0.160 sec

0.207 sec

0.374 sec

Figure 44. Sequential Photographs, Test No. MGSC-7

Figure 45. Documentary Photographs, Test No. MGSC-7

Figure 46. Documentary Photographs, Test No. MGSC-7

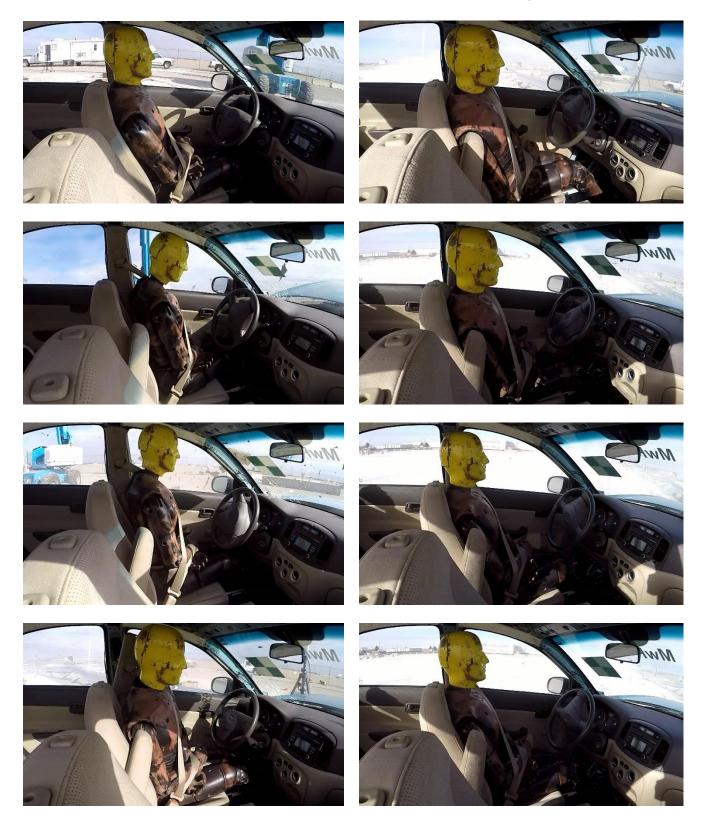


Figure 47. Documentary Photographs, Test No. MGSC-7

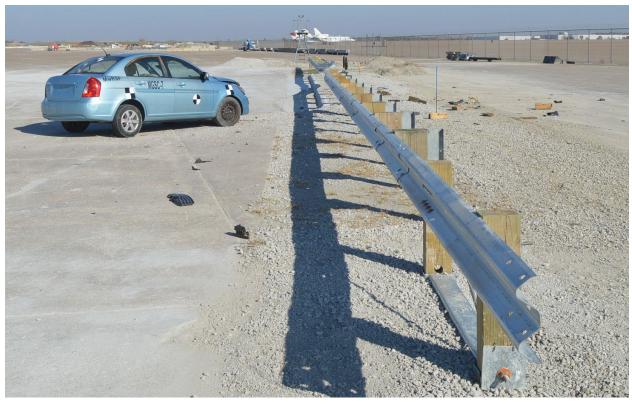


Figure 48. Vehicle Final Position and Trajectory Marks, Test No. MGSC-7

5.4 Barrier Damage

Damage to the W-beam guardrail with curb system was moderate, as shown in Figures 49 through 57. Damage consisted of contact marks on various MGS components, as well as bending, kinking, tearing, and twisting of the posts and guardrail. The length of vehicle contact along the barrier was approximately 25 ft -7 in., which spanned from 12 in. downstream from post no. 13 to 19 in. downstream from post no. 17.

The W-beam guardrail was laterally displaced between post nos. 13 and 17 and was disengaged from post nos. 14 through 17. Rail kinking and flatting was observed at multiple locations along the rail between post nos. 13 and 17. The bottom of the rail was bent upward from post no. 14 to post no. 17. The rail was partially torn at the splice location between post nos. 14 and 15. The tear extended from the bottom edge of the rail, through the lower-upstream bolt holes, and stopped near the middle of the W-beam valley.

Post nos. 14 through 16 were bent back and downstream at ground line. Post no. 17 was bent slightly downstream and twisted to face downstream. Soil heaves and craters formed at the bases of post nos. 14 through 17. Contact marks were found on the upstream edge of post nos. 14 through 17. Post nos. 3 through 14, 16, and 17 were twisted to face downstream. Post nos. 1, 2, and 19 through 29 did not deflect and were not damaged.

Blockouts disengaged from post nos. 14 through 17. The attachment bolt of post no. 15 tore out of the upstream flange web. The blockout of post no. 18 was slightly rotated such that the top of blockout angled upstream. Minor blockout splitting was observed on post nos. 3 through 5, 7, 8, and 12. Curb damage consisted of contact marks which spanned from post nos. 13 to 15.

Figure 49. System Damage, Test No. MGSC-7

Figure 50. Guardrail Damage, Post Nos. 13 through 15, Test No. MGSC-7

Figure 51. Guardrail Damage, Post Nos. 15 through 18 Test No. MGSC-7

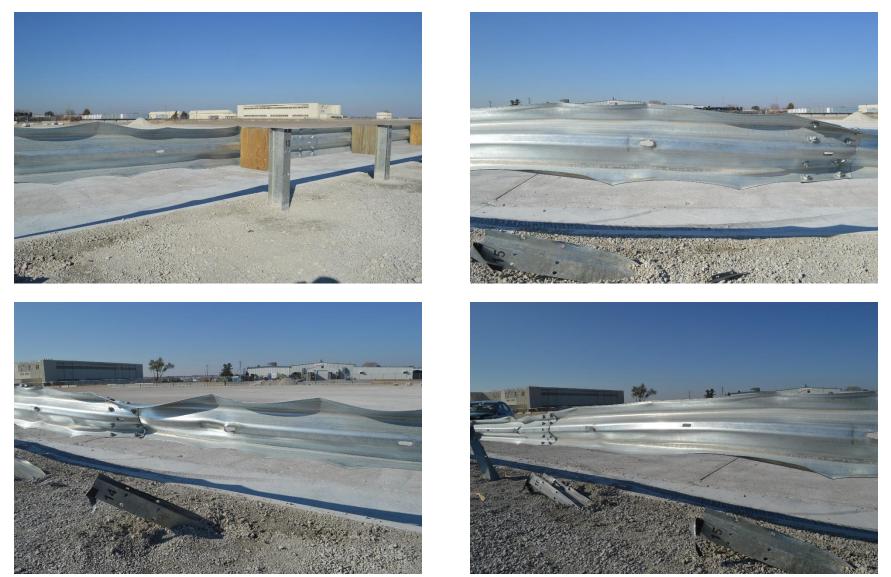


Figure 52. Backside Guardrail Damage, Post Nos. 13 through 16, Test No. MGSC-7

Figure 53. Backside Guardrail Damage, Post Nos. 16 through 18, Test No. MGSC-7

Figure 54. Post Nos. 14 and 15 Damage, Test No. MGSC-7

Figure 55. Post Nos. 16 and 17 Damage, Test No. MGSC-7

69

Figure 56. Partial Rail Tearing, Test No. MGSC-7

70

Figure 57. Curb Damage, Test No. MGSC-7

The maximum lateral permanent set of the barrier system was 19.0 in. which occurred at post no. 14, as measured in the field. The maximum lateral dynamic barrier deflection, including deformation of the guardrail along the top surface, was 23.5 in. of the rail at post no. 15, as determined from high-speed digital video analysis. The working width of the system was found to be 40.3 in., determined from video and measurements in the field. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 58.

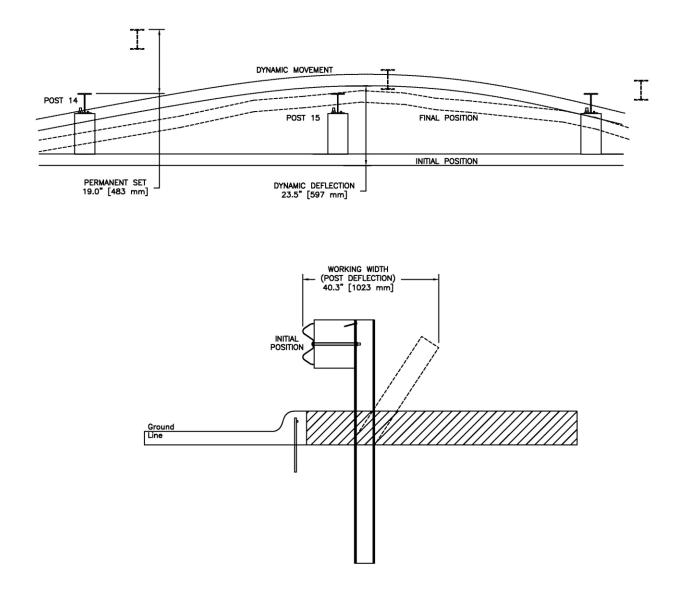


Figure 58. Permanent Deflection, Dynamic Deflection, and Working Width, Test No. MGSC-7

5.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 59 through 62. The maximum occupant compartment deformations are listed in Table 6 along with the deformation limits established in MASH 2016 for various areas of the occupant compartment. Note that none of the established MASH 2016 deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

The majority of the damage was concentrated at the left-front corner and front end of the vehicle where the impact had occurred. The left-side of the bumper cover was ripped and detached starting 8 in. left of bumper center. The left-front bumper corner was crushed inward and down. The left-side of the radiator core support was displaced. The left-front hood was folded under and pushed in. The left-front fender was bent inward 10 in., and the bottom of the fender protruded outward 5 in. The left-front frame rail was split and crushed backward. The left-front tire was torn, and the wheel rim was bent at three locations. The left-front door was dented near the front and the latch was damaged. The windshield was cracked at the bottom left-front corner, but the roof and remaining window glass were undamaged.

The left-front sway bar was bent upward approximately 2 in. and was in contact with the lower control arm. The left lower control arm was torn 6 in. from the center of the king pin and pulled outward 3 in. The left tie-rod was in contact with the left-front tire rim. A 2³/₄-in. by 6-in. scrape was found on the oil pan. Scrapes were found at multiple locations on the engine and transmission cross members. The left frame horn was crushed inward 6 in. and pushed down.

Figure 59. Vehicle Damage, Test No. MGSC-7

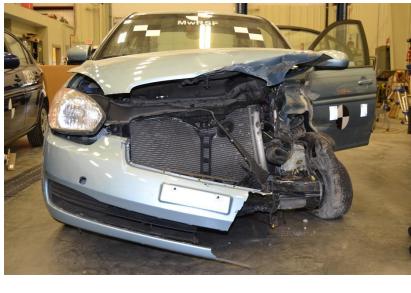


Figure 60. Vehicle Damage, Test No. MGSC-7

Figure 61. Occupant Compartment Damage, Test No. MGSC-7

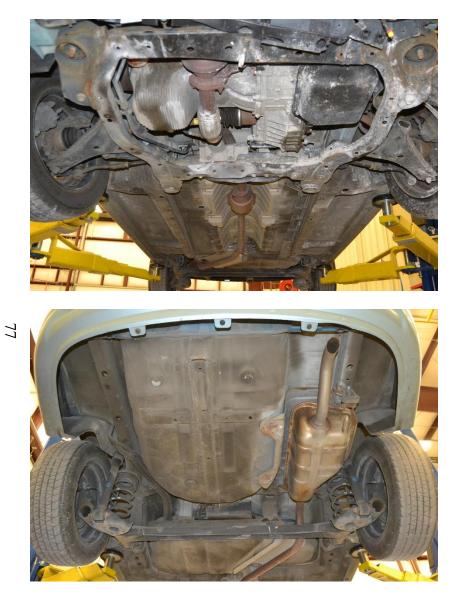


Figure 62. Vehicle Undercarriage Damage, Test No. MGSC-7

LOCATION	MAXIMUM INTRUSION (in.)	MASH 2016 ALLOWABLE INTRUSION (in.)
Wheel Well & Toe Pan	3⁄4	≤ 9
Floor Pan & Transmission Tunnel	5/8	≤ 12
A- and B-Pillars	3⁄4	≤ 5
A- and B-Pillars (Lateral)	3⁄4	≤ 3
Side Front Panel (in Front of A-Pillar)	5/8	≤ 12
Side Door (Above Seat)	7⁄8	≤ 9
Side Door (Below Seat)	3⁄4	≤ 12
Roof	1/2	<u>≤</u> 4
Windshield	0	<i>≤</i> 3
Side Windows	Intact	No shattering resulting from contact with structural member of test article
Dash	1⁄2	N/A

Table 6. Maximum Occupant Compartment Intrusion by Location, Test No. MGSC-7

*N/A – No MASH 2016 criteria exist for this location

5.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 7. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 7. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E.

Evaluation Criteria		Transducer		MASH 2016
		SLICE-1 (primary)	SLICE-2	Limits
OIV (ft/s)	Longitudinal	-32.87	-32.49	±40 (12.2)
	Lateral	19.24	19.01	±40 (12.2)
ORA (g's)	Longitudinal	-13.44	-12.50	±20.49
	Lateral	7.03	6.64	±20.49
MAX. ANGULAR DISPL. (deg.)	Roll	11.0	13.1	±75
	Pitch	-5.0	-4.3	±75
	Yaw	-70.8	-72.1	not required
_	HIV ft/s)	30.54	32.22	not required
	PHD g's)	16.77	12.58	not required
ASI		1.08	1.03	not required

Table 7. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSC-7

5.7 Discussion

The analysis of the test results for test no. MGSC-7 showed that the system adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate or ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. As the vehicle exited the barrier, its trajectory did not violate the bounds of the exit box. Therefore, test no. MGSC-7 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-10. A summary of the results from test no. MGSC-7 are shown in Figure 63.

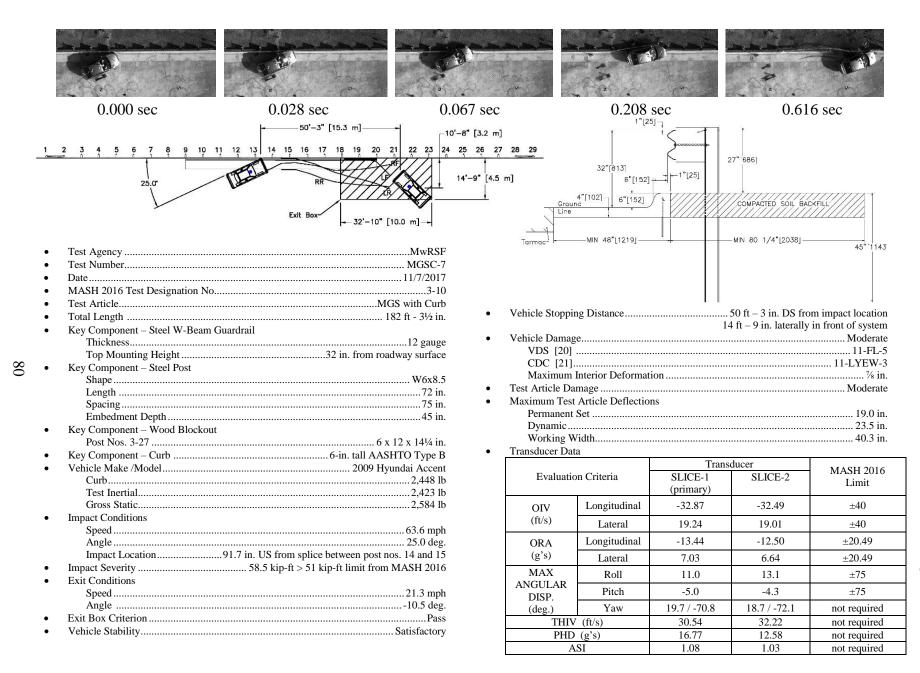


Figure 63. Summary of Test Results and Sequential Photographs, Test No. MGSC-7

August 27, 2020 MwRSF Report No. TRP-03-390-20

6 FULL-SCALE CRASH TEST NO. MGSC-8

6.1 Static Soil Test

Before full-scale crash test no. MGSC-8 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

6.2 Weather Conditions

Test no. MGSC-8 was conducted on November 28, 2017 at approximately 2:30 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 8.

Temperature	57° F
Humidity	27%
Wind Speed	21 mph
Wind Direction	0° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.00 in.

Table 8. Weather Conditions, Test No. MGSC-8

6.3 Test Description

The test installation for test no. MGSC-8 was nearly identical to that from test no. MGSC-7, except the rail height was lowered 1 in. to its nominal 31-in. top mounting height. The critical impact point for test no. MGSC-8 was selected using the CIP plots found in Section 2.3 of MASH. The critical impact point was determined to be 138 in. upstream from the splice located between post nos. 14 and 15, as shown in Figure 64.

The 5,000-lb quad cab pickup truck impacted the MGS 4.4 in. downstream from the targeted impact point at a speed of 63.4 mph and at an angle of 25.7 degrees. The vehicle was contained and redirected with exit speed and angle of 38.2 mph and -4.0 degrees, respectively. The vehicle remained stable throughout the impact event with maximum roll and pitch angular displacements of only -5 degrees and -4 degrees, respectively. During the impact event, the W-beam detached from the posts downstream from impact. The cable anchorage remained intact throughout the entire impact event. After exiting the system, the vehicle turned back into the system, impacted the barrier a second time near the downstream end of the test installation, rolled over the guardrail, and ultimately came rest on top of the guardrail near the downstream anchorage, or 95 ft – 9 in. downstream from impact.

A detailed description of the sequential impact events is contained in Table 9. Sequential photographs are shown in Figures 65 through 67. Documentary photographs of the crash test are shown in Figures 68 and 69. The vehicle trajectory and final position are shown in Figure 70.

TIME (sec)	EVENT		
0.000	Vehicle's front bumper contacted rail 133.6 in. upstream from the splice located between post nos. 14 and 15.		
0.002	Vehicle's left-front tire contacted curb.		
0.016	Post no. 13 rotated backward.		
0.020	Vehicle's left fender deformed. Vehicle's grille contacted rail and deformed. Vehicle's left-front tire contacted rail.		
0.026	Vehicle's left fender contacted rail.		
0.044	Vehicle's left-front tire became airborne. Vehicle's front airbags deployed.		
0.046	Post no. 13 deflected upstream. Vehicle rolled away from barrier. Vehicle's windshield cracked from airbag deployment.		
0.064	Post no. 14 deflected backward.		
0.066	Vehicle's left-front tire regained contact with ground.		
0.074	Post no. 14 bent downstream.		
0.082	Rail disengaged from bolt at post no. 14.		
0.084	Vehicle rolled toward barrier.		
0.088	Blockout disengaged from post no. 14.		
0.090	Post no. 15 deflected backward and downstream.		
0.124	Vehicle's left-front tire contacted post no. 14.		
0.140	Vehicle's left-rear tire contacted curb.		
0.142	Rail disengaged from bolt at post no. 15.		
0.156	Vehicle's front bumper contacted post no. 15.		
0.162	Rail disengaged from post bolts at post nos. 21 through 27.		
0.163	Vehicle's left-rear door contacted rail.		
0.190	Vehicle's left-rear tire became airborne.		
0.192	Post no. 16 bent downstream.		
0.208	Rail disengaged from bolt at post no. 16.		
0.210	Vehicle's rear bumper contacted rail and deformed.		
0.213	Vehicle's left quarter panel contacted rail.		
0.234	Blockout disengaged from post no. 16.		
0.242	Vehicle's left-rear tire regained contact with ground.		
0.258	Vehicle's front bumper contacted post no. 16.		
0.268	Rail disengaged from post bolt at post no. 28.		

 Table 9. Sequential Description of Impact Events, Test No. MGSC-8

TIME	
(sec)	EVENT
0.316	Post no. 17 bent downstream.
0.330	Vehicle's front bumper contacted post no. 17.
0.336	Rail disengaged from bolt at post no. 17.
0.342	Vehicle was parallel to system at a speed of 39.5 mph.
0.348	Rail disengaged from post bolt at post no. 29.
0.364	Blockout disengaged from post no. 17.
0.458	Rail disengaged from bolt at post no. 18.
0.498	Post no. 18 bent downstream.
0.924	Vehicle exited system at a speed of 38.2 mph and an angle of -4.0 degrees.
1.010	Vehicle began to yaw and veer back toward the barrier.
1.766	Vehicle's front bumper contacted the system near post no. 26.
1.806	Post no. 26 deflected backward.
1.824	Vehicle's left-front tire overrode rail.
1.986	Vehicle's front bumper contacted blockout no. 27.
2.024	Post no. 27 deflected backward.
2.302	Vehicle's front bumper contacted post no. 28.
2.324	Post no. 28 deflected downstream.
2.464	Vehicle's right-front tire overrode rail.
3.500	Vehicle came to rest on top of downstream anchorage.

Table 10. Sequential Description of Impact Events, Test No. MGSC-8, Cont.

Figure 64. Impact Location, Test No. MGSC-8

0.000 sec

0.100 sec

0.300 sec

0.700 sec

0.900 sec

0.000 sec

0.100 sec

0.300

0.500 sec

0.700 sec

0.900 sec

Figure 65. Sequential Photographs, Test No. MGSC-8

0.300 sec

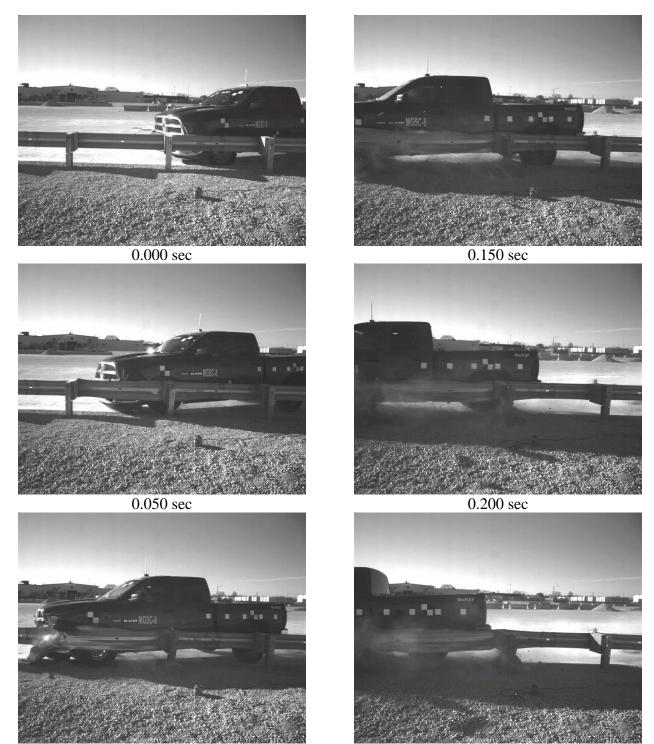
0.900 sec

0.000 sec

0.100 sec

0.300 sec

0.500 sec



0.700 sec

0.900 sec

Figure 66. Sequential Photographs, Test No. MGSC-8

0.100 sec

0.250 sec

Figure 67. Sequential Photographs, Test No. MGSC-8

August 27, 2020 MwRSF Report No. TRP-03-390-20

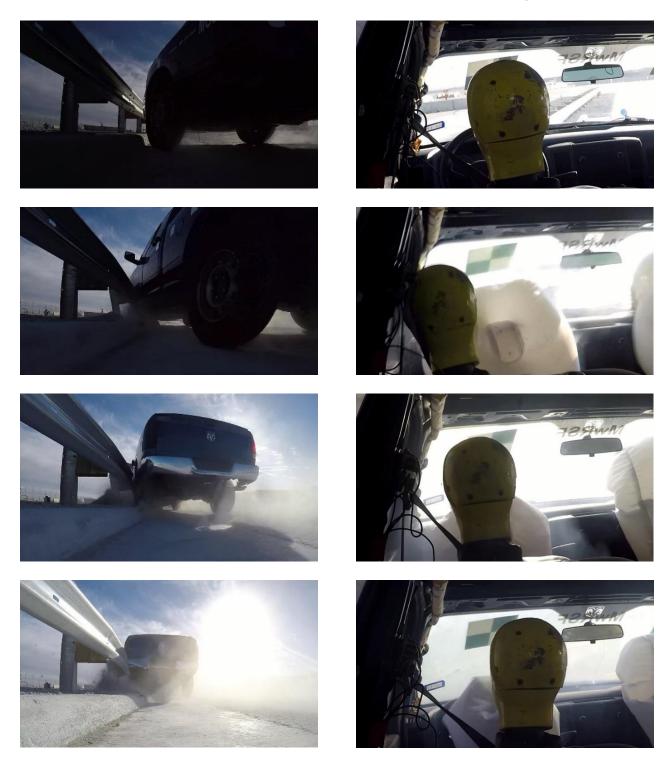


Figure 68. Documentary Photographs, Test No. MGSC-8

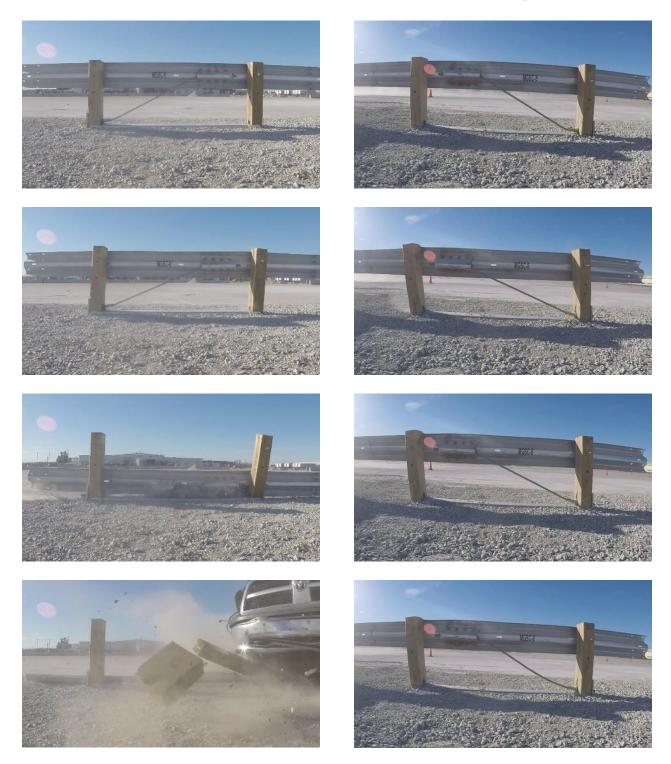


Figure 69. Additional Documentary Photographs, Test No. MGSC-8

Figure 70. Vehicle Final Position and Trajectory Marks, Test No. MGSC-8

6.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 71 through 79. Damage to the barrier spanned from post no. 12 through the downstream anchorage of the test installation. The initial contact region spanned from 50 in. downstream from post no. 12 to 5 in. downstream from post no. 18, and the secondary impact was between post nos. 26 and 29.

Curb damage consisted of intermittent tire marks between post nos. 12 and 14. A 68-in. long tire mark was found on the top face of the curb 33 in. downstream from post no. 18. Gouges measuring 7 in., 8 in., and 23 in. were observed near post nos. 13 and 14.

Guardrail damage and deformations were observed along the entire length of the test installation. The rail between post nos. 1 and 2 was slightly bent toward the back side of the system due to tension at the anchorage cable connection. Bolt-slot deformation occurred at post nos. 1, 3, 5 through 7, 12, and 13, and bolt pullout occurred at post nos. 2, 4, 8 through 11, and 14 through 29. A small kink in the W-beam guardrail was observed at post no. 12. Various kinking, flattening, and bending of the guardrail was found continuously between post nos. 13 and 18. The rail was folded under along its bottom edge at the center of post no. 13 and 74½ in. downstream from post no. 13. The rail was flattened beginning 3¾ in. downstream from post no. 13 spanning to the center of post no. 16. Kinking occurred at many locations at the top and bottom edges of the rail between post nos. 13 and 19. The rail buckled 6¼ in., 3¼ in. downstream from post no. 17. Additional flattening occurred along the base of the rail 1½ in. downstream from post no. 17 for a length of 41 in. The rail was bent 5¼ in. upstream and 5¼ in. downstream from post no. 18. The rail buckled 4¼ in and 5⅛ in. downstream from post no. 18. The rail buckled 4¼ in and 5⅛ in. downstream from post no. 18. The rail buckled 4¼ in and 5⅛ in. downstream from post no. 18. The rail buckled 4¼ in and 5⅛ in. downstream from post no. 18. The rail buckled 4¼ in and 5⅛ in. downstream from post no. 18. The rail buckled 4¼ in and 5⅛ in. downstream from post no. 18. The rail buckled 4¼ in and 5⅛ in. downstream from post no. 18. The rail buckled 4¼ in and 5⅛ in. downstream from post no. 18. The rail buckled 4¼ in and 5⅛ in. downstream from post no. 18. The rail buckled 4¼ in and 5⅛ in. downstream from post no. 18. The rail buckled 4¼ in and 5⅛ in. downstream from post no. 18. The rail buckled 4¼ in and 5⅛ in. downstream from post no. 22 to the end of the system.

The most significant post displacements and deformations spanned from post no. 13 to post no. 18. Soil gaps formed at the bases of post nos. 6 through 8, 10, 12, and 22. Soil heaves and craters formed at the bases of post nos. 14 through 19, and additional soil heaves were found at post nos. 26 and 27. Post no. 13 was bent backward and twisted downstream. Blockouts disengaged from post nos. 14 through 17. Each post in this range was bent backward and downstream in addition to being twisted to face upstream. Post no. 18 was bent backward and downstream while being twisted to face downstream. The blockouts of post nos. 18 through 23 had rotated about the attachment bolt. Post nos. 26 and 17 were bent backward and downstream, and post no. 28, which was a BCT post within the downstream anchorage, fractured off at ground level.

The maximum lateral permanent set of the barrier system was 26³/₄ in., which occurred on the guardrail located at post no. 15, as measured in the field. The maximum lateral dynamic barrier deflection was 39.4 in. measured on the guardrail at post no. 16, as determined from high-speed digital video analysis. The working width of the system was found to be 48.5 in., also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 80.

Figure 71. System Damage, Test No. MGSC-8

Figure 72. System Damage, Guardrail at Post Nos. 12 through 14, Test No. MGSC-8

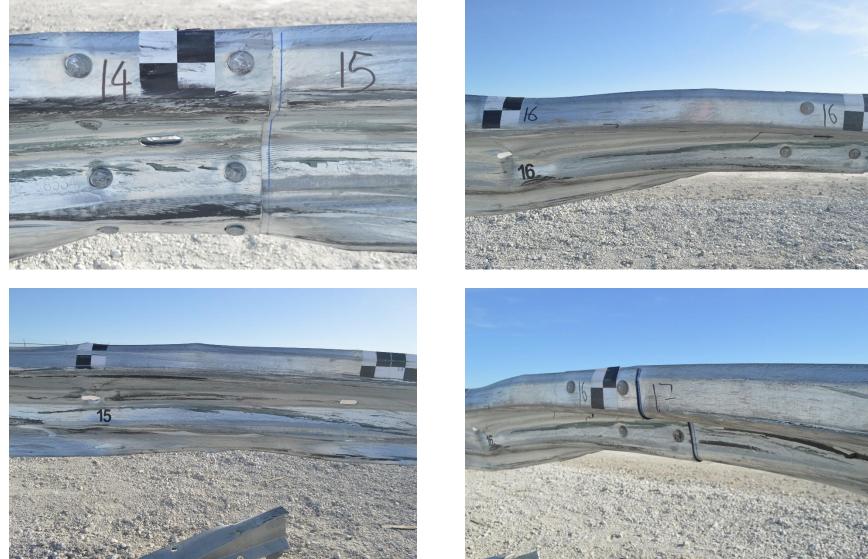


Figure 73. System Damage, Guardrail at Post Nos. 14 through 17, Test No. MGSC-8

Figure 74. System Damage, Guardrail at Post Nos. 17 through 19, Test No. MGSC-8

Figure 75. System Damage, Backside Rail at Post Nos. 12 through 15, Test No. MGSC-8

Figure 76. System Damage, Backside Rail at Post Nos. 16 through 19, Test No. MGSC-8

Figure 77. System Damage, Post Nos. 12 through 15, Test No. MGSC-8

Figure 78. System Damage, Post Nos. 16 through 19, Test No. MGSC-8

Figure 79. System Damage, Post Nos. 25 through 29, Test No. MGSC-8

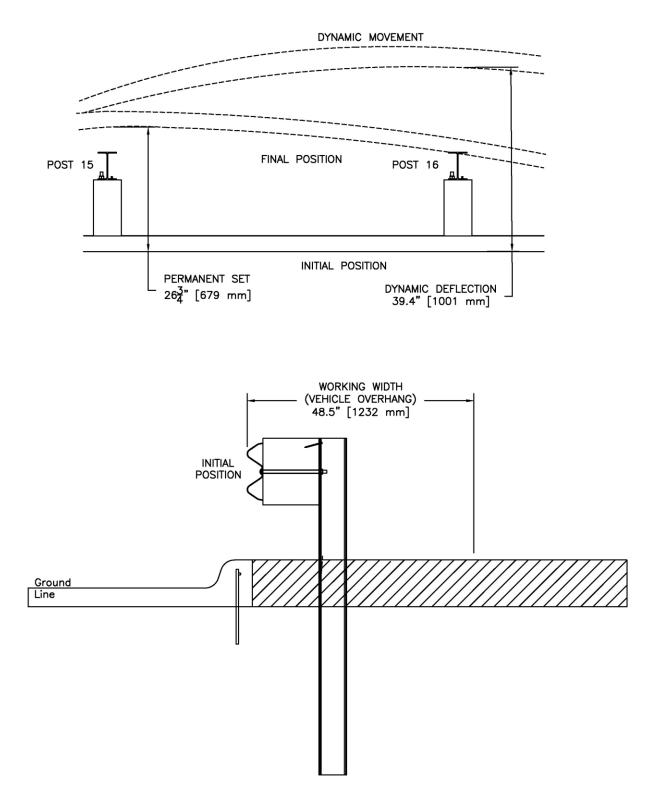


Figure 80. Permanent Deflection, Dynamic Deflection, and Working Width, Test No. MGSC-8

6.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 81 through 85. The maximum occupant compartment deformations are listed in Table 11 along with the deformation limits established in MASH 2016 for various areas of the occupant compartment. Note that none of the established MASH 2016 deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

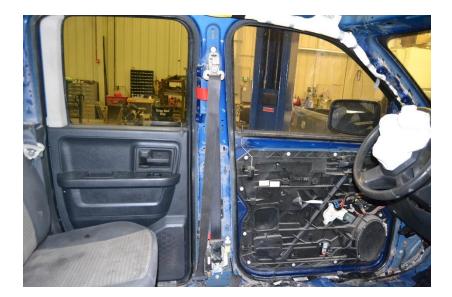
The majority of the damage was concentrated at the left-front corner of the vehicle where impact occurred. The left-front bumper was deformed inward toward the engine, and the grille was partially fractured and disengaged from the vehicle. Both front headlights were disengaged. The left-front fender was bent and torn, and the left-front tire sidewall was torn. The wheel rim was bent at several locations. Several minor dents were found on both the left-front and left-rear vehicle doors. Scrapes extended from the left-front fender to the rear bumper along the left side of the vehicle. The left-rear bumper was dented inward. The windshield was cracked at mid-height on the right side due to contact from the vehicle airbag. Additional cracks in the windshield extended outward from the bottom left corner of the windshield. The roof and remaining windows were undamaged.

Damage to the vehicle's undercarriage was minimal. The right-side lower control arm was bent in approximately $\frac{1}{2}$ in. and disengaged from the front mounting point, and the right-front bumper mounting plate was bent.

Figure 81. Vehicle Damage, Test No. MGSC-8

Figure 82. Vehicle Damage, Test No. MGSC-8

Figure 83. Vehicle Windshield Damage, Test No. MGSC-8



August 27, 2020 MwRSF Report No. TRP-03-390-20

Figure 84. Occupant Compartment Damage, Test No. MGSC-8

August 27, 2020 MwRSF Report No. TRP-03-390-20

Figure 85. Vehicle Undercarriage Damage, Test No. MGSC-8

107

LOCATION	MAXIMUM INTRUSION (in.)	MASH 2016 ALLOWABLE INTRUSION (in.)
Wheel Well & Toe Pan	3/8	≤ 9
Floor Pan & Transmission Tunnel	3/8	≤ 12
A- and B-Pillars	3/8	≤ 5
A- and B-Pillars (Lateral)	1/4	≤ 3
Side Front Panel (in Front of A-Pillar)	1/2	≤ 12
Side Door (Above Seat)	3/8	≤9
Side Door (Below Seat)	1/2	≤ 12
Roof	1/2	<i>≤</i> 4
Windshield	0	≤ 3
Side Windows	Intact	No shattering resulting from contact with structural member of test article
Dash	3/8	N/A

Table 11. Maximum Occupant Compartment Intrusions by Location, Test No. MGSC-8

*N/A - No MASH 2016 criteria exist for this location

6.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 12. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 12. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

		Trans	MASH 2016	
Evaluati	on Criteria	SLICE-1	SLICE-2 (primary)	Limits
OIV	Longitudinal	-21.63	-21.68	± 40
(ft/s)	Lateral	13.80	15.06	±40
ORA	Longitudinal	-6.67	-6.74	±20.49
(g's)	Lateral	8.09	8.78	±20.49
MAX.	Roll	-8.7	-5.3	±75
ANGULAR DISPL.	Pitch	-3.9	-4.0	±75
(deg.)	Yaw	38.5	37.3	not required
	HIV ft/s)	22.64	22.90	not required
_	PHD g's)	9.23	9.59	not required
	ASI	0.69	0.66	not required

Table 12. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSC-8

6.7 Discussion

The analysis of the test results for test no. MGSC-8 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable as the vehicle remained upright during and after the collision. The vehicle exited the barrier at an angle of -4.0 degrees, and its trajectory did not violate the bounds of the exit box.

After exiting the system, the vehicle turned back toward the system and impacted the test installation for a second time near post no. 26. The vehicle rolled over the detached W-beam, which had been pulled free from the attachment bolts and was laying on the ground, and came to rest straddling the W-beam guardrail over the downstream anchorage of the test installation. In the MASH evaluation of the system, this phenomenon was not considered to be an override of the guardrail installation for a number of reasons:

- The override occurred as a result of a secondary impact into the system. The vehicle had already been contained, redirected, and exited the system during the initial MASH-specified impact. The evaluation criteria in MASH are not intended for use on secondary impacts that occur after the vehicle exits the system.
- The secondary impact was into a system that had already been damaged by the initial impact. Specifically, the guardrail had been pulled from the downstream posts during

the initial impact and was on the ground at the time of the secondary impact, thus allowing the vehicle's front tires to traverse over the rail.

- Although the rail had detached from the posts, the cable anchorage was still intact, so the guardrail anchorage had not failed.
- The secondary impact occurred four posts from the end of the system. Previous research on the downstream anchorage used in the test installation showed that the end of length-of-need (i.e., the farthest downstream point in which a vehicle would be redirected) was six posts from the end [11-14]. Thus, impacts downstream from the sixth post from the end, such as the secondary impact witnessed during test no. MGSC-8, would be expected to result in the guardrail gating and the vehicle traveling behind the system.
- Multiple other tests on other W-beam guardrail installations have also resulted in the rail being detached from every post between the impact region and the end of the test installation while the cable anchorage remained intact [22-24]. However, in these previous tests, the vehicle never impacted the test installation a second time. Instead, the vehicles either stayed in front of the system or hooked around the system and crossed behind the system downstream from the guardrail anchorages. These previous tests were all determined to pass MASH TL-3 criteria.
- The test installation was a relatively short guardrail installation built for testing purposes only. The relatively short distance from the impact region to the anchorage system may have contributed to the W-beam pulling off of all posts downstream from impact. If the system length had been significantly longer, as most real-world guardrail installations are, it is unlikely that the guardrail detachment would have continued all the way to the anchorage.

Therefore, the secondary impact into the test installation was not considered part of the MASH evaluation of the system, and test no. MGSC-8 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11. A summary of the test results for test no. MGSC-8 are shown in Figure 86.

0.000 sec	0.044 sec	0.146 sec		0.356	sec	0.938 s	ec
	<mark>-∞96'-5</mark> " [29.1 m]		6'-11" [2.1 m]	31″[7	1" 25 - 38] 6"[152] - 1"[25] 5"(152] - 1"[25] 7	26*[660] 26*[660] WIN 80 1/4*[2038]	777777777777777777777777777777777777777
 Test Number Date MASH 2016 Test Designation No Test Article 		MGSC-8 11/28/2017 	Vehicle Damag	e		5 ft – 9 in. DS from in	Moderate
 Thickness Top Mounting Height Key Component – Steel Post 		m roadway	CDC [21] Maximum I Test Article Dat	nterior Deformat	ion		. 11-LYEW-1
Length Spacing		72 in. 75 in.	Dynamic	idth			39.4 in.
 Post Nos. 3-27 Key Component – Curb 		ГО Туре В	Evaluatio	n Criteria	Tran SLICE-1	sducer SLICE-2 (primary)	MASH 2016 Limit
			OIV (ft/s)	Longitudinal	-21.63	-21.68	±40
Gross Static				Lateral Longitudinal	-6.67	-6.74	± 40 ± 20.49
Impact Conditions Speed		63.4 mph	ORA (g's)	Lateral	8.09	8.78	±20.49 ±20.49
			MAX	Roll	-8.7	-5.3	±20.49
1	3.6 in. US from splice between post nos. 126.4 kip-ft > 106 kip-ft limit from M		ANGULAR	Pitch	-3.9	-4.0	±75
Exit Conditions			DISP. (deg.)	Yaw	38.5	37.3	not required
1		1	(ucg.) THIV		22.64	22.90	not required
6		U	PHD		9.23	9.59	not required
Vehicle Stability	S	atisfactory	A		0.69	0.66	not required

Figure 86. Summary of Test Results and Sequential Photographs, Test No. MGSC-8

7 SUMMARY AND CONCLUSIONS

The objective of the research project described herein was to evaluate the MGS offset 6 in. from a 6-in. tall, AASHTO Type B curb in accordance with MASH 2016 TL-3 criteria. A 182-ft long test installation was constructed at the MwRSF outdoor test site, and test nos. MGSC-7 and MGSC-8 were conducted according to MASH 2016 test designation nos. 3-10 and 3-11, respectively. A summary of the test evaluation for both tests is shown in Table 13.

For test no. MGSC-7, the MGS was installed with a 32-in. top mounting height, 1 in. above nominal, in an effort to evaluate an upper installation tolerance and maximize the risk of vehicle snag below the rail. The 1100C vehicle impacted the system at 63.6 mph and an angle of 25.0 degrees, resulting in an impact severity of 58.5 kip-ft (79.3 kJ). The vehicle was successfully contained and redirected by the system and exited the system at a speed of 21.3 mph and at an angle of -10.5 degrees. A partial tear covering the lower half of the W-beam was found at the critical guardrail splice location within the impact region, but the guardrail remained intact throughout the test. A maximum dynamic deflection of 23.5 in. and a working width of 32.0 in. were observed during the test. All occupant risk values were found to be within limits, and the occupant compartment deformation were also deemed acceptable. Therefore, test no. MGSC-7 was determined to satisfy the safety performance criteria for MASH 2016 test designation no. 3-10.

For test no. MGSC-8, the MGS was installed at its nominal height of 31 in. above the roadway surface. The 2270P vehicle impacted the system at 63.4 mph and an angle of 25.7 degrees, resulting in an impact severity of 126.4 kip-ft. The vehicle was successfully contained and redirected by the system and exited the system at a speed of 38.2 mph and an angle of -4.0 degrees. Although the initial contact region spanned approximately 33 ft of guardrail near the middle of the system, the guardrail was detached from all posts downstream from impact. The cable anchorage hardware remained intact. A secondary impact to the damaged test installation, which was not considered part of the MASH evaluation, resulted in the vehicle coming to rest straddling the rail over the downstream anchorage hardware. A maximum dynamic deflection of 39.4 in. and a working width of 48.5 in. were observed during the initial impact event. All occupant risk values were found to be within limits, and occupant compartment deformations were also deemed acceptable. Therefore, test no. MGSC-8 was determined to satisfy the safety performance criteria for MASH 2016 test designation no. 3-11.

The two crash tests conducted as part of this project represent both tests listed within the MASH 2016 testing matrix for TL-3 longitudinal barriers. Therefore, the MGS placed 6 in. behind a 6-in. tall AASHTO Type B curb has satisfied all evaluation criteria and has been determined to be crashworthy to MASH 2016 TL-3. Recommendations and general installation guidance for the MGS placed adjacent to curbs is contained in the following chapter.

Evaluation Factors		Evalua	Evaluation Criteria					
Structural Adequacy	А.	Test article should contain vehicle to a controlled sto underride, or override the i deflection of the test article	op; the vehicle sho installation althoug	ould not penetrate,	S	S		
	D.	1. Detached elements, frag article should not penetrate occupant compartment, or p pedestrians, or personnel in	or show potential present an undue has	for penetrating the	S	S		
		2. Deformations of, or intro- should not exceed limits see E of MASH 2016.			S	S		
	F.	The vehicle should remain maximum roll and pitch an			S	S		
Occupant Risk	H.	Occupant Impact Velocity A5.2.2 of MASH 2016 for the following limits:						
		Occupant I	mpact Velocity Lin	nits	S	S		
		Component	Preferred	Maximum				
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)				
	I.	The Occupant Ridedown A Section A5.2.2 of MASH 2 satisfy the following limits:	2016 for calculation					
		Occupant Ride	down Acceleration	Limits	S	S		
		Component	Preferred	Maximum				
		Longitudinal and Lateral	15.0 g's	20.49 g's				
	•	MASH 2016 Test De	signation No.	•	3-10	3-11		
		Final Evaluation (P	ass or Fail)		Pass	Pass		
C	a	infontomy II Ungotic		Not Applicable	1			

Table 13.	Summary	of Safety	Performance	Evaluation
-----------	---------	-----------	-------------	------------

S – Satisfactory U – Unsatisfactory NA - Not Applicable

8 RECOMMENDATIONS AND IMPLEMENTATION GUIDANCE

The following sections provide implementation guidance and/or recommendations regarding the placement of the MGS adjacent to curbs. These recommendations are intended to ensure comparable safety performance of the guardrail systems and are based on the full-scale testing and any associated research available at the conclusion of this project. Although some installation sites will require systems outside the bounds of these recommendations, the reasoning behind these recommendations should be considered along with other roadside treatments when selecting the final site specific design.

8.1 MGS to Curb Offset

Placement of the MGS closer to the face of the curb has typically been considered to enhance system performance. As the MGS is moved closer to the curb, the vehicle interacts sooner with the guardrail and the effects of the vehicle wheels overriding the curb are reduced. Therefore, the MGS should be considered crashworthy with the face of the rail offset between 0 and 6 in. from the face of the curb. This guidance is in conformance with the results and recommendations from previous NCHRP Report 350 TL-3 and MASH TL-2 studies involving the MGS and curbs [1, 7].

8.2 Applicable Curb Shapes and Heights

Shorter curbs would be expected to result in less vehicle vaulting or less vertical motion of the bumper as the vehicle traverses over the curb. Additionally, curb shapes with a sloped face geometry are likely to reduce the severity of vertical vehicle motion as compared to vertical shaped curbs. Note, the AASHTO Type B curb can be considered a near vertical curb with rounded top and bottom edges, so a 6-in. tall AASHTO Type A curb (vertical shape) is expected to produce vehicle trajectories very similar to those of the 6-in. AASHTO Type B curb tested herein. Thus, the MGS should be considered crashworthy in combination with any standard curb shape up to 6 in. in height. Examples of other AASHTO curb shapes are shown in Figure 87.

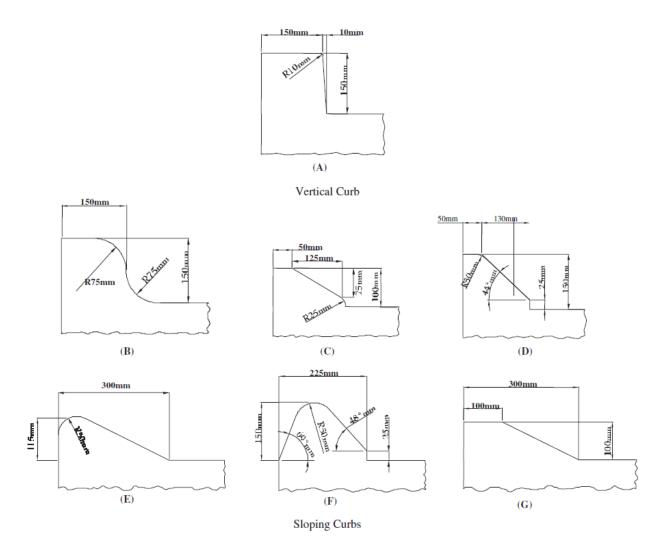


Figure 87. Standard AASHTO Curb Shapes

8.3 MGS Height Tolerances

Test no. MGSC-7 demonstrated the ability of the MGS to safely redirect small vehicles with an increased rail height of 32 in. Unfortunately, the lower bound rail height tolerance of the MGS installed adjacent to curb has not yet been evaluated. Thus, it is not recommended to install the MGS adjacent to curb at heights lower than 31 in. or higher than 32 in. (relative to the roadway surface) until further investigation has been conducted to evaluate the height tolerances of the MGS placed adjacent to curb.

8.4 Approach Slopes and Gutters

Curbs are typically installed at the edge of a roadway along the shoulder, so any approach slopes to the curb and MGS would be restricted to typical roadway crowns and grading. As such, approach slopes are not expected to exceed 10H:1V, and therefore, would not affect the performance of the MGS adjacent to curb. Additionally, curbs are commonly placed in

combination with shallow gutters to collect and drain water from the roadway. However, these gutters are seldom wider than 1-2 ft and consist of gentle slopes leading into the curb. It is unlikely that these shallow gutters would alter the trajectory of an errant vehicle traveling at speeds and departure angles near MASH TL-3 limits, so common shallow gutters are also not expected to affect the safety performance of the MGS placed adjacent to curbs.

8.5 MGS Configurations and Special Applications

The research and testing detailed herein demonstrated that the MGS installed 6 in. behind the face of a 6-in. tall, AASHTO Type B curb was crashworthy according to the TL-3 safety standards of MASH 2016. However, variations of the MGS developed for special applications may be sensitive to the addition of a curb adjacent to the guardrail. Subsequently, recommendations regarding the placement of various MGS applications adjacent to curbs may vary depending on the nature and behavior of the specific MGS configuration. The following sections provide implementation guidance and/or recommendations regarding various MGS configurations and special applications placed adjacent to curbs.

8.5.1 Wood Post MGS

Wood post versions of the MGS utilizing 6-in. x 8-in. posts of both Southern Yellow Pine and White Pine timber species were previously tested in accordance with MASH safety performance standards [25-26]. The full-scale testing illustrated that the MGS performed similarly when utilizing either 6-in. x 8-in. wood posts or W6x8.5 steel posts [27-28]. System deflections, working widths, and vehicle decelerations were all similar between these MGS configurations. As such, a wood post MGS system placed adjacent to curbs should result in similar behavior and performance to the system evaluated herein.

8.5.2 MGS without Blockouts

Previously, full-scale crash testing was successfully performed on the MGS without blockouts. The installation utilized standard steel guardrail posts and 12-in. long backup plates to prevent contact between the rail and the posts and reduce the probability of rail tearing. The system was successfully crash tested to MASH TL-3 [29]. However, vehicular impacts into guardrail placed adjacent to curbs may contact the barrier face with an increased bumper height and trajectory, especially when the front bumper and impact-side wheels become airborne early in the impact event. Guardrail blockouts help maintain rail height during system deflections as the lateral dimension of the blockout gains a vertical component as the post rotates back. Thus, the loss in height produced by the post rotating backward is offset by the vertical contribution of the blockout depth. Non-blocked MGS will allow the top rail height to decrease more rapidly as the post rotates back. Additionally, the increased embedment depth from the soil backfill behind the curb moves the post rotation point upward, reduces the distance between the rail and the post rotation point, and results in the rail height dropping more rapidly compared to an MGS installation on level terrain. Therefore, placement of a non-blocked MGS adjacent to curb is not recommended for use without further analysis and/or crash testing.

8.5.3 MGS with 8-in. Deep Blockouts

The concerns raised in the previous section discussing non-blocked MGS installations may apply to other configurations utilizing a blockout depth less than the 12-in. depth tested herein. However, it is also recognized that there are blockout depths less than 12 in. that would likely satisfy MASH TL-3 when used in MGS installations adjacent to a curb. Unfortunately, the minimum blockout depth required to ensure proper performance for the MGS adjacent to curb remains unknown until further evaluation is conducted. However, the performance of 8-in. and 12in. blockouts have been shown to be similar for installations on level terrain [30], so the performance of either blockout type should also be similar with the presence of a curb. Thus, it is recommended to utilize the same implementation guidelines and restrictions presented herein for MGS installations incorporating 8-in. blockouts adjacent to curbs.

8.5.4 MGS with an Omitted Post

Previous crash testing on an MGS installation with an omitted post was successful to MASH TL-3 criteria [24]. However, when the system was tested with MGS placed 6 in. behind a 6-in. tall AASHTO Type B curb, the W-beam ruptured, the vehicle penetrated behind the system, and the 1100C vehicle ultimately rolled over [31]. To prevent premature rail failure, 37.5 ft of nested W-beam was placed around the location of the omitted post. Crashing testing on the nested MGS system with an omitted post was successfully conducted to both MASH 2016 test designation nos. 3-10 and 3-11 [31-32]. Therefore, if the omission of a post is required within an MGS installation placed adjacent to a curb, 37.5 ft of nested W-beam guardrail should be placed around the omitted post to ensure MASH TL-3 crashworthiness.

The omission of multiple posts within an MGS installation may lead to increased deflections, increased rail loads, and increased pocketing, all of which may lead to failure of the guardrail system. Therefore, sufficient distance between omitted posts within an MGS installation is necessary to ensure proper system performance. Keeping in line with the recommendations set for the MGS on level terrain [24], the distance between omitted posts is recommended to be at least 56.25 ft, as shown in Figure 88. This distance is equivalent to omitting a single post at every ninth post along an MGS installation

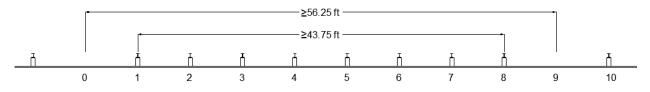


Figure 88. Minimum Recommended Distance between Omitted Posts

8.5.5 Roadside Slopes

The MGS with curb was tested on a level surface with level grading behind the curb and guardrail posts. Although steep roadside slopes are not commonly located adjacent to curbs, it is possible that a slope may be located behind the surface of the curb. Previously, the MGS without curb was successfully full-scale crash tested to MASH TL-3 with the posts located at the slope break point of a 2H:1V slope [23]. The sloped terrain resulted in a reduced soil resistance to

guardrail post rotations, and the system deflections were greatly increased as compared to the deflections of the MGS on level terrain. The additional embedment depth associated with the soil backfill behind the curb would increase the soil resistance back toward that of a post on level terrain. However, it is difficult to predict the soil-post resistance forces and the effective system stiffness that would result from the combination of sloped terrain and soil backfill behind the curb. Thus, placement of the MGS with curb adjacent to roadside slopes is not recommended until further evaluation is completed.

8.5.6 Guardrail Stiffness Transitions

Multiple thrie beam approach guardrail transitions (AGTs) have been developed and successfully crash tested with a curb placed below the thrie beam. The curbs geometries within these AGTs range in shape from a 4-in. tall triangular shape to a 6-in. vertical shape. However, the upstream stiffness transition, which connects standard MGS to the stiffened thrie beam regions of AGTs, has only been evaluated in combination with a 4-in. tall triangular shaped curb. Full-scale testing on the upstream stiffness transition with a 4-in. tall curb resulted in the 1100C small car wedging underneath the rail and causing rail rupture of the W-beam adjacent to the W-to-thrie transition segment [33]. To prevent premature rail failure, 12.5 ft of nested W-beam was added just upstream of the W-to-thrie transition segment. The modified upstream stiffness transition satisfied all evaluation criteria of MASH TL-3. However, there are still concerns that taller curbs may accentuate vehicle wedging below the rail and lead to premature rail failure. Thus, it is recommended that curbs placed adjacent to the upstream stiffness transition be limited to a maximum height of 4 in. until further evaluation is conducted.

8.5.7 Guardrail End Terminals and Anchorages

Multiple W-beam guardrail end terminals have been developed for use with the MGS. However, to date, no upstream guardrail end terminations have been evaluated to MASH criteria when placed adjacent to curbs. Thus, guardrail terminals installed adjacent to curbed roadways should follow manufacturer recommendations. If no evaluations or recommendations can be found, it may be beneficial to place upstream guardrail terminals an adequate distance upstream from the start of a curb to avoid negatively affecting the system's safety performance.

A non-proprietary, downstream anchorage system was previously developed for use at the trailing-end of guardrail installations which are not subject to reverse direction impacts. The system was successfully crash tested on level terrain to MASH TL-3 criteria [11-14]. However, the downstream anchorage was designed for a 31-in. rail height relative to ground line adjacent to the BCT posts. The presence of a curb and soil backfill, as evaluated herein, effectively reduces the rail to ground distance to 25 in. The downstream anchorage system components were not designed for this configuration and would not fit properly. Therefore, the downstream end anchorage system should not be placed adjacent to curbed roadways until further evaluation and testing are conducted.

9 MASH EVALUATION

The evaluation of the MGS placed adjacent to curb was conducted with the face of the Wbeam guardrail offset 6-in. laterally from the face of a 6-in. tall AASHTO Type B curb. The MGS was given a nominal rail height of 31 in. measured from the roadway surface, and soil backfill was placed behind the curb to maintain a ground line even with the top of the curb. As such, the nominal post embedment depth was increased by 6 in. to 46 in.

The MGS placed adjacent to curb was subjected to two full-scale crash tests in accordance with MASH 2016 TL-3 evaluation criteria. In test no. MGSC-7, the 1100C small car was contained and safely redirected. Partial tearing of the W-beam occurred at a splice location within the contact region, but the rail did not fully rupture. All occupant risk criteria was satisfied, and the test was determined to pass MASH test designation no. 3-10. During test no. MGSC-8, the 2270P pickup was captured and smoothly redirected, and all occupant risk values were below MASH limits. Thus, test no. MGSC-8 was determined to satisfy MASH test designation no. 3-11.

With the successful completion of both crash tests within the TL-3 testing matrix, the MGS placed 6 in. from a 6-in. tall AASHTO Type B curb was determined to be crashworthy to MASH 2016 TL-3 criteria. Barrier placement closer to the face of the curb is generally considered to improve system performance as it reduces the curb's effect on vehicle trajectory. Thus, the MGS should be considered crashworthy for curb-to-guardrail offsets between 0 in. and 6 in. Lower height curbs and curbs with sloped faces are also expected to reduce the vertical trajectory of impacting vehicles. Since the MGS was evaluated with a critical curb shape, the MGS is expected to remain crashworthy in combination with any standard curb shape at or below a maximum height of 6 in.

10 REFERENCES

- Polivka, K.A., Faller, R.K., Sicking, D.L., Reid, J.D., Rohde, J.R., Holloway, J.C., Bielenberg, R.W., and Kuipers, B.D., *Development of the Midwest Guardrail System (MGS)* for Standard and Reduced Post Spacing and in Combination with Curbs, Report No. TRP-03-139-04, Project No. SPR-3(017), Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, September 2004.
- Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for* the Safety Performance Evaluation of Highway Features, National Cooperative Research Program (NCHRP) Report No. 350, Transportation Research Board, Washington, D.C., 1993.
- 3. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 4. *Manual for Assessing Safety Hardware, Second Edition, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.*
- Zhu, L., Faller, R.K., Reid, J.D., Sicking, D.L., Bielenberg, R.W., Lechtenberg, K.A., and Benner, C.D., *Performance Limits for 152-mm (6-In.) High Curbs Placed in Advance of the MGS Using MASH-08 Vehicles - Part I: Vehicle-Curb Testing and LS-DYNA Analysis*, Report No. TRP-03-205-09, Project No.: SPR-3(017), Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, May 2009.
- Thiele, J.C., Lechtenberg, K.A., Reid, J.D., Faller, R.K., Sicking, D.L., and Bielenberg, R.W., *Performance Limits for 6-In. (152-mm) High Curbs Placed in Advance of the MGS Using MASH-08 Vehicles - Part II: Full-Scale Crash Testing*, Report No. TRP-03-221-09, Project No.: SPR-3(017), Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 2009.
- Thiele, J.C., Reid, J.D., Lechtenberg, K.A., Faller, R.K., Sicking, D.L., and Bielenberg, R.W., *Performance Limits for 6-In. (152-mm) High Curbs Placed in Advance of the MGS Using MASH Vehicles - Part III: Full-Scale Crash Testing (TL-2)*, Report No. TRP-03-237-10, Project No.: SPR-3(017), Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, November 2010.
- Rosenbaugh, S.K., Lechtenberg, K.A., Faller, R.K., Sicking, D.L., Bielenberg, R.W., and Reid, J.D., *Development of the MGS Approach Guardrail Transition Using Standardized Steel Posts*, Report No. TRP-03-210-10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, December 2010.
- 9. Winkelbauer, B.J., Putjenter, J.G., Rosenbaugh, S.K., Lechtenberg, K.A., Bielenberg, R.W., Faller, R.K., and Reid, J.D., *Dynamic Evaluation of MGS Stiffness Transition with Curb*, Report No. TRP 03-291-14, Midwest Roadside Safety Facility, University of Nebraska Lincoln, Lincoln, Nebraska, June 2014.

- Rosenbaugh, S.K., Stolle, C.S., and Ronspies, K.B., MGS with Curb and Omitted Post: Evaluation to MASH 2016 Test Designation No. 3-10, Report No. TRP-03-393-19, Midwest Roadside Safety Facility, University of Nebraska Lincoln, Lincoln, Nebraska, April 2019.
- Mongiardini, M., Faller, R.K., Reid, J.D., Sicking, D.L., Stolle, C.S., and Lechtenberg, K.A., Downstream Anchoring Requirements for the Midwest Guardrail System, Report No. TRP-03-279-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 28, 2013.
- Mongiardini, M., Faller, R.K., Reid, J.D., and Sicking, D.L., *Dynamic Evaluation and Implementation Guidelines for a Non-Proprietary W-Beam Guardrail Trailing-End Terminal*, Paper No. 13-5277, Transportation Research Record No. 2377, Journal of the Transportation Research Board, TRB AFB20 Committee on Roadside Safety Design, Transportation Research Board, Washington D.C., January 2013, pages 61-73.
- 13. Stolle, C.S., Reid, J.D., Faller, R.K., and Mongiardini, M., *Dynamic Strength of a Modified W-Beam BCT Trailing-End Termination*, Paper No. IJCR 886R1, Manuscript ID 1009308, International Journal of Crashworthiness, Taylor & Francis, Vol. 20, Issue 3, Published online February 23, 2015, pages 301-315.
- 14. Griffith, M.S., Federal Highway Administration (FHWA), *Eligibility Letter HSST/B-256 for: Trailing-End Anchorage for 31" Tall Guardrail*, December 18, 2015.
- 15. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 16. Clarifications on Implementing the AASHTO Manual for Assessing Safety Hardware, 2016, FHWA and AASHTO, <u>https://design.transportation.org/wp-content/uploads/sites/</u>21/2019/11/Clarifications-on-Implementing-MASH-2016-aka-MASH-QA-Updated-Nov-19-2019.pdf, November 2019.
- 17. MacInnis, D., Cliff, W., and Ising, K., *A Comparison of the Moment of Inerita Estimation Techniques for Vehicle Dynamics Simulation*, SAE Technical Paper Series 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 18. *Center of Gravity Test Code SAE J874 March 1981*, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 19. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.
- 20. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

- Meyer, D.T., Reid, J.D., Lechtenberg, K.A., Bielenberg, R.W., and Faller, R.K., *Increased Span Length for the MGS Long-Span Guardrail System Part II: Full-Scale Crash Testing*, Report No. TRP 03-339-17, Project No.: TPF-5(193) Supplement #56, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, April 7, 2017.
- Haase, A.J., Kohtz, J.E., Lechtenberg, K.A., Bielenberg, R.W., Reid, J.D., and Faller, R.K., *Midwest Guardrail System (MGS) with 6-ft Posts Placed Adjacent to a 1V:6H Fill Slope*, Report No. TRP 03-320-16, Project No.: TPF-5(193) Supplement #68, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, August 22, 2016.
- Lingenfelter, J.L., Rosenbaugh, S.K., Bielenberg, R.W., Lechtenberg, K.A., Faller, R.K., and Reid, J.D., *Midwest Guardrail System (MGS) with an Omitted Post, Final Report to the Midwest State's Pooled Fund Program*, Report No. TRP 03-326-16, Project No.: TPF-5(193) Supplement #80, Midwest Roadside Safety Facility, University of Nebraska Lincoln, Lincoln, Nebraska, February 22, 2016.
- 25. Stolle, C.J., Lechtenberg, K.A., Faller, R.K., Rosenbaugh, S.K., Sicking, D.L., and Reid, J.D., *Evaluation of the Midwest Guardrail System (MGS) with White Pine Wood Posts*, Report No. TRP-03-241-11, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, March 28, 2011.
- Gutierrez, D.A., Lechtenberg, K.A., Bielenberg, R.W., Faller, R.K., Reid, J.D., and Sicking, D.L., *Midwest Guardrail System (MGS) with Southern Yellow Pine Posts*, Report No. TRP 03-272-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, September 4, 2013.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, B.W., and Reid, J.D., *Performance Evaluation of the Midwest Guardrail System - Update to NCHRP 350 Test No. 3-11 (2214MG-1)*, Final Report to the National Cooperative Highway Research Program (NCHRP), Transportation Research Board, Report No. TRP-03-170-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln Nebraska, October 10, 2006.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, B.W., and Reid, J.D., *Performance Evaluation of the Midwest Guardrail System - Update to NCHRP 350 Test No.* 3-11 with 28" C.G. Height (2214MG-2), Final Report to the National Cooperative Highway Research Program (NCHRP), Transportation Research Board, Report No. TRP-03-171-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 11, 2006.
- Schrum, K.D., Lechtenberg, K.A., Bielenberg, R.W., Rosenbaugh, S.K., Faller, R.K., Reid, J.D., and Sicking, D.L., *Safety Performance Evaluation of the Non-Blocked Midwest Guardrail System (MGS)*, Report No. TRP-03-262-12, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, January 24, 2013.
- Dobrovolny, C.S., White, K.M., and Bligh, R.P., Synthesis of System/Vehicle Interaction Similarities/Dissimilarities with 12-Inch vs 8-Inch Blockouts with 31-Inch Mounting Height, Mid-Span Splices, Program Report No. 601621, Texas Transportation Institute, Texas A&M University, College Station, Texas, July 2014.

- Rosenbaugh, S.K., Stolle, C.S., and Ronspies, K.B., MGS with Curb and Omitted Post: Evaluation to MASH 2016 Test Designation No. 3-10, Research Report No. TRP-03-393-19, Project No.: TPF(193) Supplement #105, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, July 2, 2019.
- 32. Rosenbaugh, S.K., et al., *MGS with Curb and Omitted Post: Evaluation to MASH 2016 Test Designation No. 3-11*, DRAFT Report No. TRP-03-433-20, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, **DRAFT IN PROGRESS**.
- 33. Winkelbauer, B.J., Putjenter, J.G., Rosenbaugh, S.K., Lechtenberg, K.A., Faller, R.K., Bielenberg, R.W., and Reid, J.D., *Dynamic Evaluation of MGS Stiffness Transition with Curb*, Report No. TRP-03-291-14, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, June 30, 2014.

11 APPENDICES

Appendix A. Material Specifications

Item No.	Description	Material Spec	Reference
a1	12'-6" 12 ga. W-Beam MGS Section	AASHTO M180	H#9411949
a2	12'-6" 12 ga. W-Beam MGS End Section	AASHTO M180	H#9411949
a3	6'-3" 12 ga. W-Beam MGS Section	AASHTO M180	H#515691
a4	W6x8.5, 72" Long Steel Post	ASTM A992 Min. 50 ksi	H#55044258 H#55044251
a5	6"x12"x14¼" Timber Blockout for Steel Posts	SYP Grade No. 1 or better	CoC: 10/29/15 CoC: 4/23/14 CoC: 7/26/16
аб	16D Double Head Nail	-	CoC: Order#E000357170
b1	BCT Timber Post – MGS Height	SYP Grade No. 1 or better (no knots +/- 18" of ground on tension face)	CoC 3/2/17
b2	72" Long Foundation Tube	ASTM A500 Gr. B	H#0173175
b3	Ground Strut Assembly	ASTM A36	South: H#163375 North: BOL#43073
b4	2 ³ / ₈ " O.D. x 6" Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#A79999
b5	8"x8"x5%" Anchor Bearing Plate	ASTM A36	H#DL15103543
b6	Anchor Bracket Assembly	ASTM A36	H#JK16101488
c1	BCT Anchor Cable	-	Cable: H#DL15103032 Nut: H#15105591 Washer: L#16H- 168236-30
d1	⁵ ∕₃" Dia. UNO, 14" Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	Bolt:H#NF16202178 H#NF16100453 Nut: H#20479830
d2	⁵ ∕‰" Dia. UNO, 10" Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	Bolt: H#20351510 H#10240100 H#20297970 Nut: H#20479830
d3	%" Dia. UNO, 1¼" Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	Bolt: H#20460760 Nut: H#20479830
d4	⁵ / ₈ " Dia. UNO, 10" Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	Bolt:H#DL15107048 Nut: CoC 129980
d5	5%" Dia. UNO, 1½" Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	Bolt: H#816070039 Nut: CoC 129980
d6	⁷ / ₈ " Dia. UNO, 8" Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	Bolt: H#2038622 Nut: H#12101054
e1	5%" Dia. Plain Round Washer	ASTM F844	n/a
e2	7/8"] Dia. Plain Round Washer	ASTM F844	n/a
f1	Curb Concrete	f'c – 4,000 psi	R#2147369335
f2	#4 Rebar 819" Long	ASTM A615 Gr. 60	H#JW16104719
f3	#4 Rebar 16" Long	ASTM A615 Gr. 60	H#58028856

Table A-1. Bill of Materials, Test Nos. MGSC-7 and MGSC-8

Gregory Industries 13:54:11 Jun 24 2015 Page 1 HEAT MASTER LISTING Mill# Name CODE Original Heat Number Heat No. YR Primary Grade Secondary Grade _____ ---...... -----.... 9411949 ARC03 ARCELOR MITTAL USA, LLC 15 1021 8534 ******* Chemistry ******* Si · P C v Ti Cr S Ni Al Mn Cu MO Sn Cb N 0.0400 0.0100 0.0100 0.2100 0.7500 0.0060 0.0200 0.0100 0.0100 0.0020 0.0580 0.0020 0.0020 0.0042 0.0020 Ca 0.0003 ****** Mechanical Test ****** YIELD TENSILE ELONGATION ROCKWELL 56527 78 75774 27.15 Guardrail W-Beam 20ct/25' 100ct/12' 10ct/25ft w/MGS Anchor Panel July 2015 SMT

Figure A-1. 12-ft 6-in. W-Beam MGS Interior and End Sections, Test Nos. MGSC-7 and MGSC-8

						Certifie	ed ~\nal	ysis		initian in the second
Trinity Hi	ighway I	Products, LLC								
550 East F	lobb Av	e.				Order	Number: 1164'	746		
Lima, OH	45801					Custo	mer PO: 2563			C. The Participation
And a set of the set of the set of the set		JOT MANTE & GET					Number: 6950	0	Α	As of: 5/16/12
Customer:		VEST MACH.& SU	PPLY CO.					0		
	P. O. 1	30X 703				Doc	ument #: 1			
						Shi	pped To: NE			
•	MILFO	ORD, NE 68405				U	se State: KS			
Project:	RESA									
Qty	Part #	Description	Spec	CL	ΤY	Heat Code/ Heat #	Yield	TS	Elg C Mn P S Si Cu	Cb Cr Vn ACW
50	6G	12/6'3/5	M-180	A	2	515691	64,000	72,300	27.0 0.060 0.740 0.009 0.008 0.010 0.021	0.04 0.032 0.000 4
			M-180	A	2	4111321	63,100	80,200	29.0 0.210 0.710 0.009 0.007 0.010 0.030	
			M-180	A	2	515659	67,000	75,200	26.0 0.064 0.790 0.012 0.008 0.008 0.022	
			M-180	A	2	515660	66,800	74,300	27.0 0.064 0.740 0.012 0.006 0.009 0.017	0.000 0.025 0.000 4
			M-180	A	2	515662	63,900	72,900	28.0 0.064 0.770 0.010 0.006 0.009 0.016	
			M-180	A	2	515663	64,900	76,500	21.0 0.064 0.740 0.009 0.007 0.007 0.023	
			M-180	A	2	515668	66,700	75,500	27.0 0.063 0.770 0.014 0.007 0.010 0.024	
			M-180	A	2	515668	70,200	80,800	21.0 0.063 0.770 0.014 0.007 0.010 0.024	0.000 0.030 0.000 4
			M-180	A	2	515669	64,500	74,100	26.0 0.063 0.790 0.014 0.007 0.009 0.017	
			M-180	A	2	515687	63,400	74,100	30.0 0.068 0.750 0.012 0.010 0.008 0.025	0.000 0.060 0.000 4
			M-180	A	2	515687	65,100	74,400	28.0 0.068 0.750 0.012 0.010 0.008 0.025	0.000 0.060 0.000 4
			M-180	A	2	515690	63,000	71,800	27.0 0.059 0.720 0.010 0.008 0.013 0.024	
			M-180	A	2	515696	62,900	72,500	28.0 0.058 0.740 0.013 0.008 0.011 0.029	0.000 0.046 0.000 4
			M-180	A.	2	515696	63,900	73,400	29.0 0.058 0.740 0.013 0.008 0.011 0.029	
			M-180	A	2	515700	67,800	77,700	28.0 0.065 0.800 0.013 0.009 0.012 0.036	
			M-180	A	2	616068	62,900	71,600	27.0 0.061 0.740 0.013 0.010 0.012 0.027	
			M-180	A	2	-616068	66,700	74,200	30.0 0.061 0.740 0.013 0.010 0.012 0.027	
			M-180	A	2	616071	64,000	74,000	28.0 0.061 0.760 0.016 0.007 0.011 0.021	
			M-180	A	2	616072	63,800	74,200	29.0 0.066 0.750 0.014 0.009 0.010 0.026	
			M-180	A	2	616073	63,900	73,300	27.0 0.064 0.760 0.016 0.009 0.012 0.024	
20	(00	10/05/00/0	M-180	A	2	616073	65,000	74,500	28.0 0.064 0.760 0.016 0.009 0.012 0.024	
30	60G	12/25/6'3/\$	M-180	A	2	4111321	63,100	80,200	29.0 0.210 0.710 0.009 0.007 0.010 0.030	
			M-180	A	2	515656	63,600	73,600	27.0 0.066 0.720 0.012 0.006 0.011 0.021	
			M-180	A	2		64,800	74,300	26.0 0.069 0.740 0.010 0.006 0.011 0.022	
			M-180	A	2		67,000	75,200	26.0 0.064 0.790 0.012 0.008 0.008 0.022	
			M-180	A	2	515663	64,900	76,500	21.0 0.064 0.740 0.009 0.007 0.007 0.02	3 0.000 0.026 0.000 4

1 of 4

Figure A-2. 6-ft 3-in. W-Beam MGS Section, Test Nos. MGSC-7 and MGSC-8

					CERTIFIED MA	TERIAL T	EST REPORT						Page 1/1
GÐ	GERD	AU	CUSTOMER SH HIGHWAY SA 473 W FAIRGH	FETY CORP	CUSTOMER HIGHWAY	BILL TO SAFETY CO	DRP		GRADE A992/A709-36		PE / SIZE : Flange Beam / <mark>6 1</mark> 0	<mark>X 8.5#</mark> / 150	DOCUMENT I 0000000000
JS-ML-CARTE	RSVILLE SDALE ROAD NE		MARION,OH 4 USA		GLASTON USA	BURY,CT 06	033-0358		LENGTH 42'00"		WEIGHT 44,982 LB		T/BATCH 4258/02
ARTERSVILI SA			SALES ORDE 3399484/00001		CUSTO	MER MATEI	RIAL Nº		SPECIFICATION / DA ASTM A6-14 ASTM A709-13A	TE or REVISI	ON		
CUSTOMER PU 001677045	RCHASE ORDER NU IB-B0600800	MBER		BILL OF LADIN 1323-000006709		DATE 03/30/2016	5		ASTM A992-11 CSA G40.21-13 345WM				
CHEMICAL COM	Mn	P % .010	\$ 0.028	Si %0	្តរុរ 0.29 0	Ni .10	Çr 0.06	M 0.03	o Şn 31 0.016	У 0.016	Nb 0.000		
MECHANICAL PI YS 0 PS 520 516	2% 1 00	UT PS 712 698	SI 00	YS MPa 359 356		UTS MPa 491 481			G/L Inch 8.000 8.000	El; 20	ong. 0.50 6.40		
									<u>-</u>				
				d physical test recording the billets, was					e certify that these data are with EN 10204 3.1.	e correct and ii	n compliance with		

Figure A-3. 72-in. Long Steel Post, Test Nos. MGSC-7 and MGSC-8

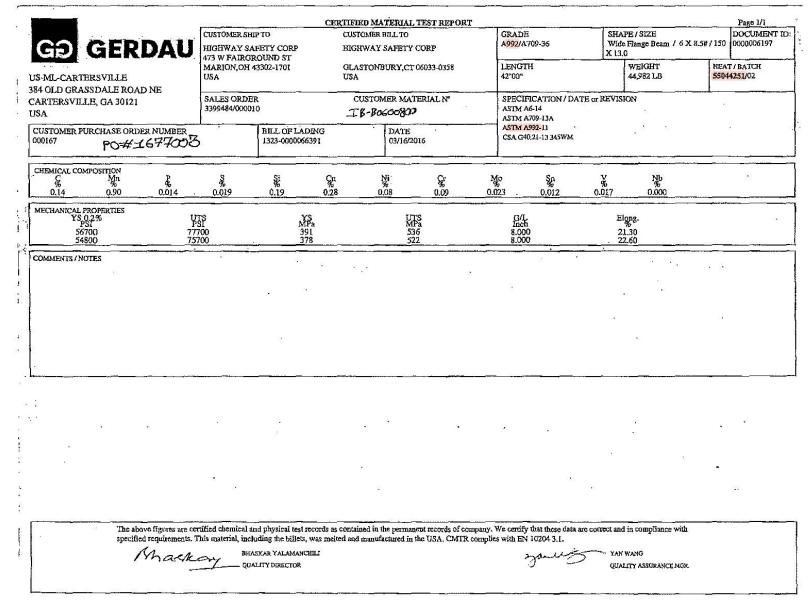


Figure A-4. 72-in. Long Steel Post, Test Nos. MGSC-7 and MGSC-8

August 27, 2020 MwRSF Report No. TRP-03-390-20

	NEBRASKA WOOD PRESERVER			
	P. O. Box 630 • St Pone 402-7 FAX 402-7	73-4319		
	692 6x12x14 Timber Blockou			
000.	une2016 SMT Black Paint T	ags		
ĸ			Date:	10/29/15
j. j.	CERTIFICATE	OF COMPLIA	ANCE	
Shipped T	D: MIDWest Machindy.	BOL#	100529	37
	PO# 3161	Preservative: <u>CC</u> .		
Part #	Physical Description	# of Pieces	Charge #	Tested Retention
	6×12-14" and Block	84	21327	.658 pit
			12. A	
	an gur an an a	e e e e		· · •
		VA: Central Naberclea W	lood Preservers certifies t	but the treated wood
T of C all a day	ve referenced material has been d and tested in accordance with AWPA	products listed above has standards, Section 236 of	ve been treated in accorda f the VDOT Road & Brid	nce with AWPA ge Specifications and
produced, treate		meets the applicable min	imum penetration and ret	ention requirements.
produced, treate	onforms to AASHTO M133 & M168.		1	,

Figure A-5. Timber Blockouts for Steel Posts, Test Nos. MGSC-7 and MGSC-8

				PRESERVE		- Aller Aller				
			P. C	Pone 402	Sutton, NE 689 -773-4319 773-4513	979			i.	
						CI	VNP In	voice	0048.	57
										Mil
						C	ustome	r PO	2892	
		C	entral Nel				s, Inc			
			Cert	tificatio	n of Insp	ection	82 (1			
	Date:		4/23/14				¥8.15			
Specific	estions.	Highu	vay Construct	ion Hee						
Preser	vative:	C	<u>CA – C 0.60</u>	pcf	-	12				
Charge #	Date Treated	Grade	Materia Length &		# Pieces	White Moisture Readings	# of E	etration Borings & nforming	Act Reten % Conf	tions
18379	4/16/14	*1	6412-14"	Blogs	756	19	160	95%	.651	pet
10009	4/16/14	ak1	618-28"	BLOOPS	84	19	40	95%	.651	per
18379								1		
18371			10						<u> </u>	
18371										
18371										
18371										•
Number plope Stateme	nt: The ab	ove refe	d and reason			ected in acc	ordanc	e with th	e above	
Number plope Stateme		ove refe				ected in acc	ordanc	e with th	ae above	*
Number plose Stateme reference	ent: The ab ed specific	oove refe ations.	erence materia			ected in acc	ordanc	e with th	ae above	
Number plose Stateme reference	nt: The ab	oove refe ations.	erence materia			ected in acc	ordanc	e with th	ae above	

P. O. Box 630 • Sutton, NE 68979 Pone 402-773-4319 FAX 402-773-4513 6x12x14 B/O Orange Paint R#17-395 Purchased for Thrie Buttress Date: 7/26//. CERTIFICATE OF COMPLIANCE Shipped TO: Michwest Machine yt Supply BOL# 1005460S Customer PO# 3292 Preservative: CCA-C 0.60 pcf AWPA UC4 Part # Physical Description # of Pieces Charge # Tested F 40755 6x8-14" BLK 126 Z2416 ,67 GRG1214BLK 6x12-14" OCD BLK 924884 212.92 6	4B_ Retentio
Orange Paint R#17-395 Purchased for Thrie ButtressDate: $7/26/14$ CERTIFICATE OF COMPLIANCEShipped TO: M_i dwest Machinery + SupplyBOL# 100 S 460SCustomer PO# 3292Preservative: $CCA - C 0.60 \text{ pcf AWPA UC4}$ Part # Physical Description# of PiecesCharge # Tested R407556x 8-14" BLK126Z 4/16Charge # Tested R	4B_ Retentio
Orange Paint R#17-395 Purchased for Thrie ButtressDate: $7/26/14$ CERTIFICATE OF COMPLIANCEShipped TO: M_i dwest Machinery + SupplyBOL# 100 \$460\$Customer PO# 3292Preservative: $CCA - C \ 0.60 \ pcf \ AWPA \ UC4$ Part # Physical Description # of Pieces Charge # Tested R40755 $6x8-14"$ BLE 126 22416 67	4B_ Retentio
Purchased for Thrie Buttress Date: 7/26/14 Date: 7/26/14 CERTIFICATE OF COMPLIANCE Shipped TO: Michwest Machinery + Supply BOL# 100 \$460\$ Customer PO# 3292 Preservative: CCA-C 0.60 pcf AWPA UC4 Part # Physical Description # of Pieces Charge # Tested R 40755 6x8-14" BLk 126 22416 , 67	4B_ Retentio
Date: 7/26//4 CERTIFICATE OF COMPLIANCE Shipped TO: Midwest Machinery + Supply BOL# 100 \$460\$ Customer PO# 3292 Part # Physical Description # of Pieces Charge # Tested R 40755 6x8-14" BLk 126 22416 , 67	4B_ Retentio
CERTIFICATE OF COMPLIANCE Shipped TO: Midwest Machinery + Supply BOL# 100 \$ 460\$ Customer PO# 3292 Preservative: CCA - C 0.60 pcf AWPA UC4 Part # Physical Description # of Pieces Charge # Tested R 40755 6x8-14" BLk 126 22416 , 67	4B_ Retentio
Shipped TO: Midwest Machinery + Supply BOL# 1005460S Customer PO# 3292 Preservative: CCA-C 0.60 pcf AWPA UC4 Part # Physical Description # of Pieces Charge # Tested R 40755 6x8-14" BLK 126 22416 67	Retentio
40755 6x8-14" BLK 126 22416 ,67	
	6
GR61214BLK 6x12-14" OCD BLK \$4684 21292 .6	
	23
Bec 84 22397 .60	70
1 168 22421 ,733	3
	1
I certify the above referenced material has been produced, treated and tested in accordance with AWPA standards and conforms to AASHTO M133 & M168. VA: Central Nebraska Wood Preservers certifies that the treated produces listed above have been treated in accordance with AWP standards, Section 236 of the VDOT Road & Bridge Specificatio meets the applicable minimum penetration and retention requirem	PA ions and
produced, treated and tested in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specificatio	P

Figure A-7. Timber Blockouts for Steel Posts, Test Nos. MGSC-7 and MGSC-8

Certificate of Compliance

Elmhurst I	nty Line Rd L 60126-2081	University of Nebraska Midwest Roadside Safety Facility	Purchase Order E000357170	Page 1 of 1	
630-600-30 chi.sales@	600 gmcmaster.com	M W R S F 4630 Nw 36TH St Lincoln NE 68524-1802	Order Placed By Shaun M Tighe		
		Attention: Shaun M Tighe Midwest Roadside Safety Facility	McMaster-Carr Number 2098331-01		
Line	Product		Ordered	Shipped	
1 97812	A109 Steel Double-Head Packs of 5	ded Nail Size 16D, 3" Length, .16" Shank Diameter, 20	0 Pieces/Pack, 5 Packs	5	

Certificate of compliance

134

This is to certify that the above items were supplied in accordance with the description and as illustrated in the catalog. Your order is subject only to our terms and conditions, available at www.mcmaster.com or from our Sales Department.

Sal Weich

Sarah Weinberg Compliance Manager

Figure A-8. 16D Double-Headed Nail, Test Nos. MGSC-7 and MGSC-8

	CENTRAL NEBRASKA WOOD PRESERVERS.	INC.		
	P. O. Box 630 * Sutt Pone 402-77 FAX 402-773	3-4319		
	R#17-505			
	BCT Posts Orange Paint Marc	h 2017 SM1	2	
			Date:	3/2/17
	CERTIFICATE O Midwest Maching + Suppi O# 3396	bol#	IANCE 10656197 CCA-C 0.60 pcf A	WPA UC4B_
Part ≠	Physical Description	≠ of Pieces	Charge ≠	Tested Retention
556806.5PS7	bx8-b.5 RubPOST	168	23489	.649
SLY OL SPST	6×8-6.5' Rub Post	42	23490	.724
1010.00 00 00	628.5-CRT PST	42	234 90	.724
			22401	1.
6568065PJT	628-45" BCT	42	23491	. 651
6568065PJT	6-28-45" BLT	42		. 105 [

Figure A-9. BCT Timber Post, Test Nos. MGSC-7 and MGSC-8

					Cert	tified Analy	sis	Hunnay Products
Trinit	y Hi	ghway Pr	roducts, LLC					
550 E	ast R	obb Ave				Order Number: 1215324	Pr	od Ln Grp: 9-End Terminais (Dom)
Lima,	OH 4	5801				Customer PO: 2884		As of: 4/14/14
Custo	mer:	MIDWI	EST MACH.& SUPPLY CO	Э.		BOL Number: 80821		Ship Date:
		P. O. B	OX 703			Document #: 1	Foi	undation Tubes Green Paint
		MILFOI	RD, NE 68405			Shipped To: NE Use State: KS	R#:	15-0157 September 2014 SMT
Proje	ct:	STOCK	ς.					
		Part#		Spec	CL TY Heat Code/H		TS	Elg C Mn P S Si Cu Cb Cr Vn ACW
	10	701A	.25X11.75X16 CAB ANC	A-36	A3V3361	48,600	69,000	29.1 0.180 0.410 0.016 0.005 0.040 0.270 0.000 0.070 0.001 4
		701A		A-36	JJ4744	50,500	71,900	30.0 0.150 1.060 0.010 0.035 0.240 0.270 0.002 0.090 0.021 4
	12	729G	TS 8X6X3/16X8'-0" SLEEVE	A-500	0173175	55,871	74,495	31.0 0.160 0.610 0.012 0.009 0.010 0.030 0.000 0.030 0.000 4
	15	736G	5'/TUBE SL/.188"X6"X8"FLA	A-500	0173175	55,871	74,495	31.0 0.160 0.610 0.012 0.009 0.010 0.030 0.000 0.030 0.000 4
	12	749G	TS 8X6X3/16X6'-0" SLEEVE	A-500	0173175	55,871	74,495	31.0 0.160 0.610 0.012 0.009 0.010 0.030 0.000 0.030 0.000 4
	5	783A	5/8X8X8 BEAR PL 3/16 STP	A-36	10903960	56,000	79,500	28.0 0.180 0.810 0.009 0.005 0.020 0.100 0.012 0.030 0.000 4
•		783A		A-36	DL13106973	57,000	72,000	22.0 0.160 0.720 0.012 0.022 0.190 0.360 0.002 0.120 0.050 4
	20	3000G	CBL 3/4X6'6/DBL	HW	99692			
	25	4063B	WD 6'0 POST 6X8 CRT	HW	43360			
	15	4147B	WD 3'9 POST 5.5"X7.5"	HW	2401			
	20	15000G	6'0 SYT PST/8,5/31" GR HT	A-36	34940	46,000	66,000	25.3 0.130 0.640 0.012 0.043 0.220 0.310 0.001 0.100 0.002 4
	10	19948G	.135(10Ga)X1.75X1.75	HW	P34 74 4	• 1999 (March 1997)		
	2	33795G	SYT-3"AN STRT 3-HL 6'6	A-36	JJ6421	53,600	73,400	31.3 0.140 1.050 0.009 0.028 0.210 0.280 0.000 0.100 0.022 4
	4	34053A	SRT-31 TRM UP PST 2'6.625	A-36	JJ5463	56,300	77,700	31.3 0.170 1.070 0.009 0.016 0.240 0.220 0.002 0.080 0.020 4
	1							
								1 of 3

Figure A-10. Foundation Tube, Test Nos. MGSC-7 and MGSC-8

				Certifie	u rual	y 1313		E K
inity High	iway Pr	oducts, LLC						
0 East Rol	bb Ave.			Order N	umber: 12149	03 Pro	d Ln Grp: 9-End Terminals (Dom)	
ma, OH 458	801			Custon	ner PO: 2878		A	s of: 3/7/14
ustomer: 1	MIDŴI	EST MACH.& SUPPLY	CO.	BOL N	umber: 80278		Ship Date:	
I	P. O. B	OX 703		Docu	ment #: 1			
				Ship	ped To: NE			
1	MILFOF	RD, NE 68405		Use	e State: KS			
roject: S	STOCK							
Qty P	Part #	Description	Spec CL T	Y Heat Code/ Heat	Yield	TS	Elg C Mn P S Si Cu	Cb Cr Vn ACW
36 3	749G	TS 8X6X3/16X6'-0" SLEEV	E A-500	0173175	55,871	74,495	31.0 0.160 0.610 0.012 0.009 0.010 0.030	0.000 0.030 0.000 4
20 3	1000G	CBL 3/4X6'6/DBL	HW	98790				
22 9	9852A	STRUT & YOKE ASSY	A-1011-SS	. <mark>163375</mark>	48,380	64,020	32.9 0.190 0.520 0.011 0.003 0.030 0.110	0.000 0.050 0.000 4
S	9852A		A-36	11237730	45,500	70,000	30.0 0.170 0.500 0.010 0.008 0.020 0.080	0.000 0.070 0.001 4
	*	Ground Strut	Green Paint	t ·				
		R#15-0157 Sep	otember 2014	4 SMT		2		
	ry, all n	naterials subject to Trinit		-				
	TICEDY	VAB MELLED AND MAR				AULA AUL.		
LL STEEL		MEETS AASHTO M-1	ou, ALL SIRUCIUI					
IL STEEL ILL GUAR ILL COATE	DRAĮL NGS PR	MEETS AASHTO M-1 OCESSES OF THE STEEL	L OR IRON ARE PERF			THE "BUY	AMERICA ACT"	
LL STEEL LL GUAR LL COATE LL GALVA	DRAĮL NGS PR ANIZED	MEETS AASHTO M-1 OCESSES OF THE STEE MATERIAL CONFORM	L OR IRON ARE PERF S WITH ASTM-123 (U	S DOMESTIC SHIPMEN	rs)		AMERICA ACT"	*
ALL STEEL ALL GUAR ALL COATE ALL GALVA	DRAĮL NGS PR ANIZED ANIZED	MEETS AASHTO M-1 OCESSES OF THE STEED MATERIAL CONFORMS MATERIAL CONFORMS	L OR IRON ARE PERF S WITH ASTM-123 (U S WITH ASTM A123 (S DOMESTIC SHIPMEN & ISO 1461 (INTERNATI	TS) ONAL SHIPMEN		AMERICA ACT"	
LL STEEL LL GUAR LL COATE LL GALVA LL GALVA	DRAĮL NGS PR ANIZED ANIZED GOOD	MEETS AASHTO M-I OCESSES OF THE STEEL MATERIAL CONFORMS MATERIAL CONFORMS PART NUMBERS END	L OR IRON ARE PERF S WITH AS1M-123 (U S WITH AS1M A123 (DING IN SUFFIX B,F	S DOMESTIC SHIPMEN & ISO 1461 (INTERNATI ?, OR S, ARE UNCOAT	FS) ONAL SHIPMEN ED	TTS).	'AMERICA ACT" I ASTM A-153, UNLESS OTHERWISE ST	ATED.
LL STEEL LL GUAR LL COATE LL GALVA LL GALVA TNISHED OLTS CON	DRAĮL NGS PR ANIZED ANIZED GOOD MPLY 4PLY W	MEETS AASHTO M-1 OCESSES OF THE STEE MATERIAL CONFORM MATERIAL CONFORM PART NUMBERS END WITH ASTM A-307 SP /TTH ASTM A-563 SPE	L OR IRON ARE PERE S WITH AS'IM-123 (U S WITH AS'IM A123 DING IN SUFFIX B,F ECIFICATIONS AN CIFICATIONS AND	S DOMESTIC SHIPMEN & ISO 1461 (INTERNATI ?, OR S, ARE UNCOAT D ARE GALVANIZED P ARE GALVANIZED I	TS) ONAL SHIPMEN ED IN ACCORDA N ACCORDAN	TTS) NCE WITH CE WITH 2	I ASTM A-153, UNLESS OTHERWISE ST ASTM A-153, UNLESS OTHERWISE STA	
LL STEEL LL GUAR LL COATE LL GALVA LL GALVA INISHED (OLTS COM IUTS COM	DRAIL NGS PR ANIZED ANIZED GOOD MPLY APLY W COMPL'	MEETS AASHTO M-1 OCESSES OF THE STEEJ MATERIAL CONFORM MATERIAL CONFORM PART NUMBERS END WITH ASTM A-307 SP /TTH ASTM A-563 SPE Y WITH ASTM F-436 SPE	L OR IRON ARE PERE S WITH AS'IM-123 (U S WITH ASTM A123 (DING IN SUFFIX B, P ECIFICATIONS AND CIFICATIONS AND CIFICATION AND/O	S DOMESTIC SHIPMEN & ISO 1461 (INTERNATI ?, OR S, ARE UNCOAT D ARE GALVANIZED P ARE GALVANIZED I R F-844 AND ARE GALV	TS) ONAL SHIPMEN ED IN ACCORDAN N ACCORDAN 'ANIZED IN ACC	TTS) NCE WITH CE WITH A CORDANCE	I ASTM A-153, UNLESS OTHERWISE ST ASTM A-153, UNLESS OTHERWISE STA 3 WITH ASTM F-2329.	
LL STEEL LL GUAR LL COATH LL GALVA LL GALVA INISHED (OLTS COM UTS COM VASHERS (4" DIA CA	DRAIL NGS PR ANIZED ANIZED GOOD MPLY APLY W COMPLY BLE 6X	MEETS AASHTO M-1 OCESSES OF THE STEEJ MATERIAL CONFORMS MATERIAL CONFORMS PART NUMBERS END WITH ASTM A-307 SP. /TTH ASTM A-563 SPE Y WITH ASTM F-436 SPE 19 ZINC COATED SWA	L OR IRON ARE PERE S WITH AS'IM-123 (U S WITH ASTM A123 (DING IN SUFFIX B, P ECIFICATIONS AND CIFICATIONS AND CIFICATION AND/O	S DOMESTIC SHIPMEN & ISO 1461 (INTERNATI ?, OR S, ARE UNCOAT D ARE GALVANIZED P ARE GALVANIZED I R F-844 AND ARE GALV	TS) ONAL SHIPMEN ED IN ACCORDAN N ACCORDAN 'ANIZED IN ACC	TTS) NCE WITH CE WITH A CORDANCE	I ASTM A-153, UNLESS OTHERWISE ST ASTM A-153, UNLESS OTHERWISE STA	
ALL STEEL ALL GUAR ALL COATH ALL GALVA (INISHED) BOLTS COI NUTS COM WASHERS (64" DIA CA	DRAIL NGS PR ANIZED ANIZED GOOD MPLY APLY W COMPLY BLE 6X	MEETS AASHTO M-1 OCESSES OF THE STEEJ MATERIAL CONFORMS MATERIAL CONFORMS PART NUMBERS END WITH ASTM A-307 SP. /TTH ASTM A-563 SPE Y WITH ASTM F-436 SPE 19 ZINC COATED SWA	L OR IRON ARE PERE S WITH AS'IM-123 (U S WITH ASTM A123 (DING IN SUFFIX B, P ECIFICATIONS AND CIFICATIONS AND CIFICATION AND/O	S DOMESTIC SHIPMEN & ISO 1461 (INTERNATI ?, OR S, ARE UNCOAT D ARE GALVANIZED P ARE GALVANIZED I R F-844 AND ARE GALV	TS) ONAL SHIPMEN ED IN ACCORDAN N ACCORDAN 'ANIZED IN ACC	TTS) NCE WITH CE WITH A CORDANCE	I ASTM A-153, UNLESS OTHERWISE ST ASTM A-153, UNLESS OTHERWISE STA 3 WITH ASTM F-2329.	
ALL STEEL ALL GUAR ALL COATH ALL GALVA ALL GALVA FINISHED BOLTS COI NUTS COM WASHERS (DRAIL NGS PR ANIZED ANIZED GOOD MPLY APLY W COMPLY BLE 6X	MEETS AASHTO M-1 OCESSES OF THE STEEJ MATERIAL CONFORMS MATERIAL CONFORMS PART NUMBERS END WITH ASTM A-307 SP. /TTH ASTM A-563 SPE Y WITH ASTM F-436 SPE 19 ZINC COATED SWA	L OR IRON ARE PERE S WITH AS'IM-123 (U S WITH ASTM A123 (DING IN SUFFIX B, P ECIFICATIONS AND CIFICATIONS AND CIFICATION AND/O	S DOMESTIC SHIPMEN & ISO 1461 (INTERNATI ?, OR S, ARE UNCOAT D ARE GALVANIZED P ARE GALVANIZED I R F-844 AND ARE GALV	TS) ONAL SHIPMEN ED IN ACCORDAN N ACCORDAN 'ANIZED IN ACC	TTS) NCE WITH CE WITH A CORDANCE	I ASTM A-153, UNLESS OTHERWISE ST ASTM A-153, UNLESS OTHERWISE STA 3 WITH ASTM F-2329.	
ALL STEEL ALL GUAR ALL COATH ALL GALVA ALL GALVA FINISHED (30LTS COM NUTS COM WASHERS (3/4" DIA CA	DRAIL NGS PR ANIZED ANIZED GOOD MPLY APLY W COMPLY BLE 6X	MEETS AASHTO M-1 OCESSES OF THE STEEJ MATERIAL CONFORMS MATERIAL CONFORMS PART NUMBERS END WITH ASTM A-307 SP. /TTH ASTM A-563 SPE Y WITH ASTM F-436 SPE 19 ZINC COATED SWA	L OR IRON ARE PERE S WITH AS'IM-123 (U S WITH ASTM A123 (DING IN SUFFIX B, P ECIFICATIONS AND CIFICATIONS AND CIFICATION AND/O	S DOMESTIC SHIPMEN & ISO 1461 (INTERNATI ?, OR S, ARE UNCOAT D ARE GALVANIZED P ARE GALVANIZED I R F-844 AND ARE GALV	TS) ONAL SHIPMEN ED IN ACCORDAN N ACCORDAN 'ANIZED IN ACC	TTS) NCE WITH CE WITH A CORDANCE	I ASTM A-153, UNLESS OTHERWISE ST ASTM A-153, UNLESS OTHERWISE STA 3 WITH ASTM F-2329.	

Figure A-11. Ground Strut Assembly, Test Nos. MGSC-7 and MGSC-8

¥25 E. O'C Lima, OH	opnor			
	MIDWEST MACH & SUPPLY CO, P. O. BOX 81097 LINCOLN, NE 68501-1097	Sales Order: 1093497 Customer PO: 2030 BOL # 43073 Document # 1	Print Date: 6/30/08 Project: RESALE Shipped To: NE Use State: KS	
		Trinity Highway Pro	ducts. LLC	
	Certificate (Of Compliance For Trinity Industries h	IC. ** SLOTTED RAIL TERMINAL *	*
		NCHRP Report 350		
		NCHICE Report 550	Compnant	÷ .
Pieces	Description	دې د د د د د ور		an a
64 192 32	5/8"X10" GR BOLT A307 5/8"X18" GR BOLT A307 1" ROUND WASHER F844	а б		
64 192 192	1" HEX NUT A563 WD 6'0 POST 6X8 CRT WD BLK 6X8X14 DR			MGSBR
64 64	NAIL 16d SRT WD 3'9 POST 5.5X7.5 BAND			1
132 128 32	STRUT & YOKE ASSY SLOT GUARD '98 3/8 X 3 X 4 PL WASHER		G,	ound Strut
				090453-8
	ery, all materials subject to Trinity Highway	y Products, LLC Storage Stain Policy No.	LG-002.	
				· -
ź				E.
5 L				
LL GUAR	L USED WAS MELTED AND MANUFA IDRAIL MEETS AASHTO M-180, ALL S	STRUCTURAL STEEL MEETS ASTM A		n 1
HOLTS CON HUTS CON 4" DIA CA	MPLY WITH ASTM A-563 SPECIFICATI BLE 6X19 ZINC COATED SWAGED END - 49100 LB	FIONS AND ARE GALVANIZED IN AC IONS AND ARE GALVANIZED IN ACC AISI C-1035 STEEL ANNEALED STUD 1" I	CORDANCE WITH ASTM A-153, UNLES ORDANCE WITH ASTM A-153, UNLES DIA ASTM 449 AASHTO M30, TYPE II BRE	S OTHERWISE STATED.
State of Ohio	o, County of Allen. Swom and Subscribed befo	reméthis 30th day of June, 2008	Trinity Highway Products, LLC	stillan &
D mintorios	Remiree EL VAI DAL	J	(2 of 4

Figure A-12. Ground Strut Assembly, Test Nos. MGSC-7 and MGSC-8

August 27, 2020 MwRSF Report No. TRP-03-390-20

1 2 3		1 - N. 1	S EX	LTUBE			
	1000 BURLING	TON STREET, NORTH	~	4116 1-818-474-5210 TOLL	FREE 1-800)-892-TUBF	×
			EEL VENTURES, LL				
			Certified Te	est Report	<i></i>		
Cuttleman SPS - Now Ca	entury		Size 02.375	Customer Order No: 4500269918	Date	07/25/2016	
401 New Cent	and the second second	1127	Gauge: .154	Delivery No:82799116	1.		
			Specification: ASTM A500-13 G	r.B/C, ASTM A53-12 Gr.B BNT	1, ASME S	A53 Gr.B BNT*	
			I <u></u>		-	the second second	
		1 X	All and the				
APT BANKS AND S	Yield KSI 63.2		gation Linch 30	R#17-175	H#A7	79999	
		a bire		BCT Post	Slee	eves QTY	8
		1		Oct 2016	SMT		
				1. A.			
Heat No A79999	C 0.0700	MN P 0.8400 0.0110	S SI 0.0040 0.02	CU NI 200 0.1500 0.0500	CR 0.0600	MO W 0.0200 0	.0010
			*	10 M 10 M			
		$z_{i,2} = z_{i-2}$					
		1 1	89 <u>1</u> 1	and the second second			
				No. States No.			
		30 K		Section of the sec			
		1 × 1	생활	1	4	1 A	
			a la la grada de la composición de la c				
						- 40	
Ne hereby certi nanulacturing is rade tiles abov	lify that all test is in accordance ve. This produ	e to A.S.T.M. parame oct was manufactured	report are correct as ters encompassed with	contained in the records of our in the scope of the specificatio ur purchase order requirements. DNLY.	ns denoted	All testing and in the specification	and
Ne hereby cert nanulacturing is rade tiles abov INT = Grade B t This material ha	lify that all test is in accordance ve. This produ not pressure to	t results shown in this is to A.S.T.M. parame not was manufactured asted - meets tensile & nto direct contact with	a report are correct as ters encompassed with in accordance with you a chemical preparties O	in the scope of the specificatio ur purchase order requirements.	na denoted	in the specification	
Ne hereby cert nanufacturing is rade tiles abov INT Grade B t Ibly material ha process, testing	bify that all test is in according to. This produ- not pressure to as not come in g, or inspection	t results shown in this is to A.S.T.M. parame uct was manufactured seted - meets tensile if nto direct contact with is.	a report are correct as ters encompassed with in accordance with you a chemical preparties O	in the scope of the specificatio ur purchase order requirements. INEY. smpounds, or any mercury bear	na denoted	in the specification	
Ne hereby certi nanulacturing is prade tiles abov INT=Grade B a Ibly material ha process, testing This material is	bify that all test is in accordance ve. This produ- not pressure to as not come in g. or inspections in compliance	t results shown in this is to A.S.T.M. parame ct was menufactured sted - meets tensile (nto direct contact with is, with EN 10204 Section	terport are correct as ters encompassed with in accordance with you is chemical properties O mercury, any of its co on 4.1 Inspection Certi	in the scope of the specificatio ur purchase order requirements. INEY. smpounds, or any mercury bear	na denoted	in the specification	
Ne hereby cert manufacturing is grade tiles abov JNT = Grade B t (fbis material ha process, testing This material is (bis material ha	bify that all test is in accordance ve. This produ- not pressure te as not come in g, or inspections in compliance as passed NDE	t results shown in this is to A.S.T.M. parame ct was menufactured sted - meets tensile (nto direct contact with is, with EN 10204 Section	i report are correct as ters encompassed within in accordance with you a chemical properties O mercury, any of its co on 4.1 Inspection Certi testing. This material	in the scope of the specificatio ur purchase order requirements. INLY. simpounds, or any mercury bear flicate Type 3.1	na denoted	in the specification	
Na hereby cert manufacturing is grade tiles abov 3NT = Grade B t Phis material ha process, testing This material is This material ha	bify that all test is in accordance ve. This produ- not pressure te as not come in g, or inspections in compliance as passed NDE	t results shown in this is to A.S.T.M. parame cut was manufactured stod - meets tensife & no direct contact with is. with EN 10204 Secti (eddy current, A309)	i report are correct as ters encompassed within in accordance with you a chemical properties O mercury, any of its co on 4.1 Inspection Certi testing. This material	in the scope of the specificatio ur purchase order requirements. INLY. simpounds, or any mercury bear flicate Type 3.1	na denoted ing devices	in the specification during our menufac	
We hereby cert manufacturing is grade tiles abov BNT « Grade B i This material ha process, testing This material is This material ha	bify that all test is in accordance ve. This produ- not pressure te as not come in g, or inspections in compliance as passed NDE	t results shown in this is to A.S.T.M. parame cut was manufactured stod - meets tensife & no direct contact with is. with EN 10204 Secti (eddy current, A309)	i report are correct as ters encompassed within in accordance with you a chemical properties O mercury, any of its co on 4.1 Inspection Certi testing. This material	in the scope of the specificatio ur purchase order requirements. INLY. sampounds, or any mercury bear ficate Type 3.1 has passed flattening tests.	na denoted ing devices	in the specification during our menufac	
Ne hereby cert manufacturing is grade tiles abov JNT = Grade B t (fbis material ha process, testing This material is (bis material ha	bify that all test is in accordance ve. This produ- not pressure to as not come in g, or inspections in compliance as passed NDE	t results shown in this is to A.S.T.M. parame cut was manufactured stod - meets tensife & nto direct contact with is. with EN 10204 Secti (eddy current, A309)	i report are correct as ters encompassed within in accordance with you a chemical properties O mercury, any of its co on 4.1 Inspection Certi testing. This material	in the scope of the specificatio ur purchase order requirements. INLY. sampounds, or any mercury bear ficate Type 3.1 has passed flattening tests.	na denoted ing devices	in the specification during our menufac	

Figure A-13. BCT Post Sleeve, Test Nos. MGSC-7 and MGSC-8

NUCCR COP	PORATION EL SOUTH CAROLINA	Mill Certification 7/30/2015		MTR #: 000008789 300 Steel Mill Roa DARLINGTON, SC 2954 (843) 393-584 Fax: (843) 395-870
POB	TY INDUSTRIES INC FORM ACCOUNTING-4TH FLOO OX 568887 AS, TX 75356-8887 689-0847 214) 589-8535	LIMA.	TY INDUSTRIES LIMA . ROBB AVENUE T 55 OH 45801-0000 589-8407 214) 589-8420	
Customer P.O.	171075		Sales Order	229472.1
Product Group	Merchant Bar Quality		Part Number	5362580024010W0
Grade	NUCOR MULTIGRADE		Lot #	DL1510354303
Size	5/8x8" Flat		Heat #	DL15103543
Product	5/8x8" Flat 20' NUCOR MULTIC	GRADE	B.L. Number	C1-668702
Description	NUCOR MULTIGRADE		Load Number	C1-347435
Customer Spec			Customer Part #	100395B
ereby certify that the r	naterial described herein has been manufact	ured in accordance with the specifications and standard	s listed above and that it satisfies t	hose requirements.
0.15% 0.7	An P S 15% 0.013% 0.025% 1020	Si Cu Ni 0.20% 0.36% 0.09%	Cr Mo 0.09% 0.021%	V Cb Sn 0.0500% 0.003% 0.016%
		Tensile 1: 74,000psi		gation: 25% in 8"(% in 203.3mm)
eld 1: 58,000psi eld 2: 58,000psi ecification Comn	nents: NUCOR MULTIGRADE ME	Tensile 2: 74,000psi	Elong	gation 25% in 8"(% in 203.3mm)
ecification Comn 150(345), A572/5 150W(350W) AA		and a second period of	Elong A36/A36M-12, A529/529M ,21-04 GR44W(300W) & QQ-S-741D, KILLED FG	ation 25% in 8"(% in 203.3mm) -05(2009) PRACTICE

Figure A-14. Anchor Bearing Plate, Test Nos. MGSC-7 and MGSC-8

	IR Mill Certification <i>FL JACKSON, INC.</i> 7/27/2016		MTR#: M1-15090 NUCOR STEEL JACKSON, IN 3630 Fourth Stre Flowood, MS 3922 (601) 839-162 Fax: (601) 836-620
EX13 121	AL STEEL INC Ship To: O'NE ACCOUNTS PAYABLE 4530 X 98 BIRN NGHAM, AL 35202-0098 (205 599-5000 Fax: 205) 599-8052	EAL STEEL INC 0 MESSER-AIRPORT HWY MINGHAM, AL 35222 0 599-8000 (205) 599-6052	
Customer P.O.	00771356	Sales Order	343125.6
Product Group	Merchant Bar Quality	Part Number	5350030024010W0
Grade	NUCOR MULTIGRADE	Lot#	JK1610148801
Size	1/2x3" Flat	Heat#	JK16101488
Product	1/2x3" Flat 20' NUCOR MULTIGRADE	B.L. Number	M1-429898
Description	NUCOR MULTIGRADE	Load Number	M1-150903
Customer Spec	telefrial describes herein has been menufactured in accordance with the specifications and stands	Customer Part #	00777557
Roll Date: 4/5/201 Melt Date: 3/30/20	an a	<u>.cs:48</u>	
0,16% 0.1 CE4020 CE	Vin P S SI Cu Ni 78% 0.017% 0.028% 0.20% 0.28% 0.09% 4529 39%	Ct Mo 0.14% 0.020%	V Cb Sn 0.0280% 0.001% 0.010%
			gation 25% in 8"(% in 203.3mm)
Specification Com A572/572M GR50 SA36/SA36M MEE	ments: NUCOR MULTIGRADE MEETS THE REQUIREMENTS OF: ASTI ASTM709/709M GR36/GR50 CSA G40.21 GR44Wi300W//GR50Wi350V TS EN10204 SEC 3.1 REPORTING REQUIREMENTS	M A36/36M, ASTM A520/52 V) AASHTO M270/M270M (
	ments: NUCOR MULTIGRADE MEETS THE REQUIREMENTS OF: ASTI ASTM/09/709M GR36/GR50 CSA G40.21 GR44/Wi300W/GR50W/350V ITS EN10204 SEC 3.1 REPORTING REQUIREMENTS IRING PROCESSES OF THE STEEL MATERIALS IN THIS PRODUCT, ATES, ALL PRODUCTS PRODUCED ARE WELD FREE. MERCURY, IN A TESTING OF THIS MATERIAL.		9M GR50 ASTM R36/GR50 ASME
	IRING PROCESSES OF THE STEEL MATERIALS IN THIS PRODUCT. ATES, ALL PRODUCTS PRODUCED ARE WELD FREE, MERCURY, IN A TESTING OF THIS MATERIAL.		9M GR50 ASTM SR36/GR50 ASME VE OCCURRED WITHIN EN USED IN THE TOVED
	IRING PROCESSES OF THE STEEL MATERIALS IN THIS PRODUCT. ATES, ALL PRODUCTS PRODUCED ARE WELD FREE, MERCURY, IN A TESTING OF THIS MATERIAL.	INCLUDING MELTING, HA ANY FORM, HAS NOT BE QA App SI# 7775	9M GR50 ASTM SR36/GR50 ASME VE OCCURRED WITHIN EN USED IN THE TOVED
	IRING PROCESSES OF THE STEEL MATERIALS IN THIS PRODUCT, STES. ALL PRODUCTS PRODUCED ARE WELD FREE. MERCURY, IN A TESTING OF THIS MATERIAL.	INCLUDING MELTING, HA ANY FORM, HAS NOT BE QA App SI# 7775	9M GR50 ASTM SR36/GR50 ASME VE OCCURRED WITHIN EN USED IN THE TOVED
	IRING PROCESSES OF THE STEEL MATERIALS IN THIS PRODUCT. ATES, ALL PRODUCTS PRODUCED ARE WELD FREE, MERCURY, IN A TESTING OF THIS MATERIAL.	INCLUDING MELTING, HA ANY FORM, HAS NOT BE QA App SI# 7775	9M GR50 ASTM SR36/GR50 ASME VE OCCURRED WITHIN EN USED IN THE TOVED

Figure A-15. Anchor Bracket Assembly, Test Nos. MGSC-7 and MGSC-8

NUCOR NUCOR CORPORATION NUCOR STEEL SOUTH CAROLINA

Mill Certification 6/13/2015

Sold To:	NUCOR FASTENER INDIANA
	PO BOX 6100 ST JOE, IN 46785-0000
	(800) 955-6826 Fax: (219) 337-1726

Ship To:	NUCOR FASTENER 6730 COUNTY ROAD 60 ST JOE, IN 46785
	(800) 955-6826 Fax: (219) 337-1722

Customer P.O.	153148	Sales Order	225393.3
Product Group	Special Bar Quality	Part Number	30001281480V780
Grade	1045L	Lot #	DL1510303201
Size	1-9/32" (1.2813) Round	Heat #	DL15103032
Product	1-9/32" (1.2813) Round 40' 1045L	B.L. Number	C1-664767
Description	1045L	Load Number	C1-344378
Customer Spec		Customar Part #	025016

Roll Date: 6/3/2015 Melt Date: 5/26/2015 Gty Shipped LBS: 65,291 Gty Shipped Pcs: 372

Melt Date:	5/26/2015
------------	-----------

C 0.45%	Mn 0.67%	V 0.003%	SI 0.20%	S 0.019%	P 0.003%	Cu 0.17%	Cr 0.07%	Ni 0.06%	Mo 0.01%	Al 0.002%	Cb 0.004%
Pb 0.005%	Sn 0.009%	Ca 0.0023%	B 0.0004%	Ti 0.001%	NICUMO 0.24						
NICUMO: CL	+Ni+Mo										
Roll Date: 6	3/2015										
Reduction Re	atlo 38 ;1										
ASTM E381 Surface: 2	Mid Radiu	s: 2 Cen	ter: 2								

Specification Comments:

1.2.3M

WELDING OR WELD REPAIR WAS NOT PERFORMED ON THIS MATERIAL MELTED AND MANUFACTURED IN THE USA MERCURY, RADIUM, OR ALPHA SOURCE MATERIALS IN ANY FORM HAVE NOT BEEN USED IN THE PRODUCTION OF THIS ATERIAL

Chemistry Verification Checks

25016. RMH . 30068 Part#_

	Checked By	Date
Receiving OK:	197	622-15
Certifications OK:_	375	4-22-15
- Carles		

HAL James H. Blew

Division Metallurgist

Page 3 of 4

NBMG-10 January 1, 2012

Figure A-16. BCT Anchor Cable, Test Nos. MGSC-7 and MGSC-8

			LOT NO. 371123B		Post Office Box 6100 Saint Joe, Indiana 46785 Telephone 260/337-160
CUSTOMER		IVISION			
	STENAL COMPANY-I	/ e	NUCOR ORDER #	978943	
			CUST PART #		
		FB488556	CUSI PARI #	38210	
	RT ISSUE DATE	3/04/16			
DATE SHIP		8/17/16	CUSTOMER P.O. #		M M
			PLUMMER, LAB TECHN		
			T REPORT **********	* * * * * * *	$A = \{\ell \in \mathcal{N} \mid \mathcal{N} \}$
NUCOR PAR	N N N N N N N N N N N N N N N N N N N		DESCRIPTION		$X \times \mathcal{H} Y$
175647	3	600 371123B			
MANUFACTU	RE DATE 1/07/1	6	HEX NUT H.D.G./G	REEN LUBE	n
CHEMIST			L GRADE -1045L		
MATERIAL	HEAT			AT ANALYSIS) B	Y MATERIAL SUPPLIER
NUMBER	NUMBER	C MN	P S SI		NUCOR STEEL - SOUTH CAROL
RM030412	DL15105591	.44 .64	.005 .020 .20		
MECHANI	CAL PROPERTIES	IN ACCORDANCE W	ITH ASTM A563-07a		
SURFACE	CORE	PROOF LOAD	TENSIL	E STRENGTH	
HARDNESS	HARDNESS	90900 LBS	Γ	EG-WEDGE	
(R30N)	(RC)		(LBS)	STRESS (PS	I)
N/A	26.6	PASS	NZA	N/A	
N/A	27.0	PASS	N/A	N/A	
N/A	27.6	PASS	N/A	N/A	
N/A	28.9	PASS	N/A	N/A	
N/A	26.7	PASS	N/A	N/A	
	ALUES FROM TESTS		17.8	N/ A	
AVERAGE 1	27.4	5			
PRODUCTION	N LOT SIZE	90800 PCS			
PRODUCTION	G E01 312E	70000 PC3			
VISUAL	INSPECTION IN A	CCORDANCE WITH	ASTM A563-07a		80 PCS. SAMPLED LOT PASSED
COATING	- HOT DIP GALV	ANIZED TO ASTM	F2329-13 - GALVANI	ZING PERFORMED	IN THE U.S.A.
1. 0.003	294 2. 0.00	311 3. 0.0	0346 4. 0.0023	5 5. 0.0021	8 6. 0.00270 7. 0.00353
8. 0.003	322 9. 0.00	406 10. 0.0	0269 11. 0.0027	5 12. 0.0031.	5 13. 0.00487 14. 0.00253
15. 0.004	416				
	HICKNESS FROM 1	5 TESTS .0031	8		
			CHED & TEMPERED (M	IN 800 DEG E)	
HEAT TREE	AUDIENT AUDIENT	TIZED, DIE QUEN	CHED & TEHTERED ()	IN OUT DED IV	
	ONS PER ASME B1		Indian Sectors 1		
		#SAMPLES TESTED		AXIMUM	
	h Across Corner:		1.824	1.844	
Thick	kness	32	0.980	1.001	

ALL TESTS ARE IN ACCORDANCE WITH THE LATEST REVISIONS OF THE METHODS PRESCRIBED IN THE APPLICABLE SAE AND ASTM SPECIFICATIONS. THE SAMPLES TESTED CONFORM TO THE SPECIFICATIONS AS DESCRIBED/LISTED ABOVE AND WERE MANUFACTURED FREE OF MERCURY CONTAMINATION. NO INTENTIONAL ADDITIONS OF BISMUTH, SELENIUM, TELLURIUM, OR LEAD WERE USED IN THE STEEL USED TO PRODUCE THIS PRODUCT. THE STEEL WAS MELTED AND MANUFACTURED IN THE U.S.A. AND THE PRODUCT WAS MANUFACTURED AND TESTED IN THE U.S.A. PRODUCT COMPLIES WITH DFARS 252.225-7014. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. THIS CERTIFIED MATERIAL TEST REPORT RELATES ONLY TO THE ITEMS LISTED ON THIS DOCUMENT AND MAY NOT BE REPRODUCED EXCEPT IN FULL.

MECHANICAL FASTENER CERTIFICATE NO. A2LA 0139.01 EXPIRATION DATE 12/31/17

NUCOR FASTENER A DIVISION OF NUCOR CORPORATION lyssen Kenn W

JOHN W. FERGUSON QUALITY ASSURANCE SUPERVISOR

Page 1 of 1

Figure A-17. BCT Cable Nuts, Test Nos. MGSC-7 and MGSC-8

Certified Material Test Report to BS EN ISO 10204-2004 3.1

FOR USS FLAT WASHER HDG

COUNTRY OF ORIGIN: CHINA CUSTOMER: FASTENAL FACTORY NAME: IFI & MORGAN LTD. FACTORY ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang. China

DESCRIPTION: 1	DATE: 2016-10-08
INVOICE NBR: TD16680155	ORDER NBR. 210114135
PART NBR.: 33188	QUANTITY:3240PCS
LOT NO.: 16H-168236-30	

DIMENSIONS

(UNIT:INCH)

			R	ESUL	Т	
	STANDARD	1	2	3	4	5 .
INSIDE DIA	1.055-1.092	1.068	1.068	1.067	1.069	1.068
OUTSIDE DIA	2.493-2.530	2.514	2.513	2.514	2.514	2.511
THICKNESS	0.136-0.192	0.146	0.149	0.152	0.152	0.147

WE HEREBY CERTIFY THAT THIS WAS PRODUCED AS PER CUSTOMER'S REQUIREMENT.

CHARACTERISTICS	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
HOT DIP GALVANIZED	ASTM F2329			
	Min 43 um	48-64um	8 0	

NOTE

1. QUANTITY OF SAMPLES:	5 PCS
2. JUDGEMENT: GOOD	NORGAN CAN
3. CHIEF INSPECTOR:	~检验专用章 ~
	QUANLITY CONTROL

Figure A-18. BCT Washers, Test Nos. MGSC-7 and MGSC-8

King Ster Corporation		Material Certification
Heat:	NF16202178	
Grøde:	1010	
Note;	Processed in the USA Rockford Bolt Rockford, IL PO# P36771 Weight: 16,400	
laterial Specification Type	Material Specification	Actual
Chemical	C	,12%
	Mn	.54 %
	P	.Q07 %
	S -	.035 %
	ŚI	.17 %
	Ni	.07 %
	Cr	.07 %
	Mo	.02 %
5	8	.0001 %
	Cu	.20 %
	V	.003 %
1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	Nb	.003 %
	Sn	.009 %
	Са	.0003 %
Physical	Tensile Full-Size (PSI)	64654 psi
4	Yield Full-Size (PSI)	47065 psi
	% Elongation	24 %
	Reduction Ratio:	158.8:1
	Metted & Manufactured in:	USA

Figure A-19. 5%-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8

	August 27, 2020
MwRSF Report N	o. TRP-03-390-20

HUCOR MILL CERTIFICATION DETAILS NSNE-NORFOLK, NE 3540 المراجع المحاصلين والمحاصلين والمحا Purchase Order #: 14404 Heat #: NF16100453 Customer: KRUEGER & CO - ELMHURST Customer Part #: 593R1010IQH Bill of Lading : 319723 Longth: 0'0" Certified By : Jim Hill Date: 02/11/2016 Lot #: NF1610045312 Tag #: NF1611016424 Grade: 1010 Size : 19/32 WRC Melt Date : 02/05/2016 Divison : NSNE-Norfolk, NE Qty Shipped LBS: 45350 Qty Shipped PCS : 11 Comments: Roll Date : 02/11/2016 man and an and and a second hemical Properties -Wt.% **Physical Properties** Imperial-pai Ć Mn Si \$ P Gu Cr NI Mo 65642 Tensile: 0.12 0.56 0.19 0:030 0.008 0.23 0.06 0.08 0.02 Yield: 51554 Elongation (in 8 inches): AI ٧ Nb Pb Sn Ca в TI Elongation (in 2 inches): 0.002 0.003 0.004 0.000 0.009 0.0004 0.0002 0.001 arbon Equiv: hereby certify that the material described herein has been manufactured in accordance with the specification and standards listed above and that it satisfies lose requirements. All melting and manufacturing process were performed in the United States of America unless otherwise noted on the mill test report.

Jim Hill Division Metallurgist

Figure A-20. 5%-in. by 14-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8

EMAIL CHARTER 1658 Cold Springs Road wille, Wisconsin 53080 STEEL (262) 268-2400 1-800-437-8789 A Division of ing Company, Inc. Fax (262) 268-2570 **CHARTER STEEL TEST REPORT** Melted in USA Manufactured in USA Cust P.O. 91893 Customer Part # AXA18CB-5/16 Charter Sales Order 30124802 20479830 Heat # Ship Lot # 2117839 Grade 1018 X AK FG RHQ 5/16 Johnstown Wire Technologies Process HR 124 Laurel Ave. Finish Size 5/16 Johnstown, PA-15906 Ship date 13-JAN-17 I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and that it satisfies these requirements. The recording of false, fictibious and fraudulent statements or entries on this document may be punishable as a felony under federal statute. Test results of Heat Lot # 20479830 Lab Code: 125544 CHEM P .008 CR .05 MO .01 CU .04 C MN 8 81 8N .003 NI .001 .16 .84 .004 .060 .03 %₩t 8 NB AL N T .0050 .0001 .001 .001 CAT OI=.35 Test results of Rolling Lot # 2117839 Nin Value 68.6 72 # of Tests Max Value 68.5 Mean Value TENSILE (KBI) REDUCTION OF AREA (%) 88.6 TENSILE LAB = 0358-04 72 72 RA LAB = 0358-04 1 NUM DECARB=1 REDUCTION RATIO=637:1 AVE DECARB (Inch)=.000 Manufactured per Charter Steel Quality Manual Rev Date 12/12/13 Specifications: Charter Steel certifies this product is indistinguishable from background radiation levels by having process radiation detectors in place to measure for the presence of radiation within our process & products. Meets customer specifications with any applicable Charter Steel exceptions for the following customer documents: Customer Document = RW007-RW100 Revision = Dated = 08-NOV-13 Additional Comments:

Figure A-21. 5%-in. Diameter Guardrail Nut, Test Nos. MGSC-7 and MGSC-8

		Ora	ange	Pain	t H#203	351510	L#15	0424	L			ł	350	206
.*		TR	INIT	425	GHWAY East O'Co Lima, Ohi 419-227	onnor A o 45801		5, LL0	C					2
Cust			Ctool		MATE	RIAL	CERT							
Gust	omer:		Stock			Invo	ice Nu			mber 16	5, 2015	-		
Part Nu	mhau		35000			1	.ot Nu			16 70		-		
Descri			x 10"		Heat			antity: 51510		16,702 702		Pcs.		
Deach	puon.		Bolt		Number	rs:			1					
Heat	с	MN	P	S		ATERIA	MO	CU	SN	V	AL	N	В	TI
Heat 20351510	C .09	MN .33	.007	.002		04 .05	.01	.06	.004	.001	AL .028	N .007	.0001	.001
													1	
				P	LATING	OR PR	DTECT	TIVE (COATI	ING				
	*** THE N	**THIS MATER	PROD	t Ave.T UCT W SED IN	PLATING hickness / /AS MANU THIS PRO HE BEST C	/ Mils) IFACTUR DUCT W DF OUR F	ed in t as mei	2. HE UN .TED A EDGE 4	52 ITED S ND MA	(2.0 Mils TATES	of an Ture	IERIC. D IN T	HE U.S.	

Figure A-22. 5/8-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8

Description: 5/8" x 10" G.R. Bolt Heat Numbers: 10240100 10,820 PASSED & CERTIFIED Specification: AUG 2 0 73/3 AUG 2 0 73/3 AUG 2 0 73/3 Trinity Highway Products LLC Dallas, Texas Trinity Highway Products LLC Dallas, Texas Trinity Highway Products LLC Dallas, Texas Description: Heat C MN P S SI NI CR MO CU SN V AL N B TI NB 0240100 .09 .49 .01 .007 .09 .04 .09 .02 .08 .008 .002 .023 .001 .001 .001	425 East O'Connor Ave. Lima, Ohio 45801 1419-227-1296 Image: August 18, 2013 MATERIAL CERTIFICATION Customer: Slock Description: S66" X 10" G.R. Bolt Numbers: Lot Number: 130009L Bolt Numbers: Bolt Numbers: 10240100 10,820 PASSED & CENTIFIC Specification: S66" X 10" G.R. Heat 10240100 Bolt Numbers: 10231650 5,413 PASSED & CENTIFIC Dates: AUG 2 0 200 Thity Highway Products. LLC Dates: Test Name Bolt Numbers: 10231650 5,413 PLATERIAL CHEMISTRY Dates: Tests Platting OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave. Thickness / Mils) _2.51 PLATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave. Thickness / Mils) _2.51 State of OHio, COUNTY OF ALLEN 19.44 SWORN AND SUBSCRIBED BEFORE ME THIS 19.44 MUCL Motary P															350	206	8/24
Lima, Ohio 45801 419-227-1296 MATERIAL CERTIFICATION Customer: Slock Dete: August 16, 2013 Invoice Number: 1398091 Lot Number: 1398091 Part Number: 3500G Bolt Numbers: 10240100 10,820 PASSED & CURTIFIED Bolt Numbers: 10231650 5,413 MATERIAL CHEMISTRY AUG 2 0 700 Trinity Highway Products, LLC Deliz, Texas Diozdotool 0.9 49 01 02020100 0.9 49 00 0.1 Pleat C MN P S Notation Alug 2 0 700 Trinity Highway Products, LLC Dolt 0.07 0.9 0.4 0.00 0.01 0.01 Diozdotool 0.9 4.9 0.01 0.9 0.8 0.02 0.23 0.05 0.001 0.01 Diozdotool 0.9 4.9 0.01 0.9 0.8 0.02 0.23 0.07 0.01	Lima, Ohio 45801 419-227-1296 <u>MATERIAL CERTIFICATION</u> Customer: Slock Date: August 16, 2013 Invoice Number: 1308091 Lot Number: 14308091 Lot Number: 16,233 Pcs. art Number: 3500G Quantity: 16,233 Pcs. Description: 6/6" x 10" G.R. Heat 10240100 10,820 PACSUD & CLRTATED Bolt Numbers: 10231650 5,413 PCS. Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY Date: FLANC DOI: 10.007 0.001 0.01 0.01 0.01 0.02 0.08 0.002 0.02 0.005 0.001 0.01 0.01 0.01 0.01 0.01 0.			TR	INIT	Y HIO	HW.	AY P	ROD	UCTS	, LL	С			1	n		
Heat Invoice Number: Bolt Number: Invoice Number: Invoice Number: Invoice Number: Invoice Number: Invoice Number: AUG 20 200 Thity Highway Products, LLC Delist Numbers: NATERIAL CHEMISTRY Number: AUG 20 200 Thity Highway Products, LLC Delist Number: AUG 20 202 0.08 0.006 0.002 0.023 0.005 0.001 0.001 0.001 Delist Number: PLATING OR PROTECTIVE COATING Material Used In This PRODUCT WAS MELTED AND MANUSACTURED IN THE USA Metereby Certify That To The BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED	Alig-227-1296 MATERIAL CERTIFICATION Customer:									e,					21		24 24	
Customer: Slock Date: August 16, 2013 Invoice Number: 1308091 Part Number: 3500G Quantity: 16,233 Pcs. Description: 5/8* x 10* G.R. Heat 10240100 10,820 PASSED & CENTIFIED Bolt Numbers: 10231650 5,413 PASSED & CENTIFIED Specification: ASTM A307-A / A153 / F2320 Trinity Highway Products LLC MATERIAL CHEMISTRY Date: AUG 2 0 7/3 Heat C MN P SI NI CR MO CU SN V AL N B TI NB 10240100 .09 .49 .01 .07 .09 .04 .09 .02 .08 .008 .002 .023 .005 .001	Customer: Stock Date: August 16, 2013 Invoice Number: 130809L Lot Number: 16,233 Pcs. Pescription: 5/8" x 10" G.R. Heat 10240100 10,820 PASSED & CENTIFIED Bolt Numbers: 10231650 5,413 AUG 2 0 733 Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY Trinty Highway Products. LLC Dallas, Texas Fiend 09 Heat C MIN P S SI NI CR MO CU SN V AL N B TI NB 240100 09 49 01 007 09 04 08 02 08 008 002 023 005 0001 001 001 231650 09 49 008 011 09 05 06 02 09 006 002 023 005 0001 001 001 231650 09 49 008 011 09 05 06 02 09 006 002 023 005 0001 001 001 PLATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickness / Mils) 2.51 (20 Mile Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA*** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A YE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. MUT HIGHWAY PEDDUCTS LLC STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19 ⁴ Aug Aug Aug MUT, MTANY PUBLIC 425 E. O'CONNOR AVENUE LIMA, OHIO 45801 AUG AT 200 -14					1									V			
Customer: Stock Date: August 16, 2013 Invoice Number: 1308091 Part Number: 3500G Quantity: 16,233 Pcs. Description: 5/8" x 10" G.R. Heat 10240100 10,820 PASSED & CENTIFIED Bolt Numbers: 10231650 5,413 PASSED & CENTIFIED Specification: ASTM A307-A / A153 / F2329 Trinity Highway Products LLC MATERIAL CHEMISTRY Date: Finity Highway Products LLC Deltas: Trinity Highway Products LLC Material C MN P Si NI CR NO CU SN V AL N B TI NB 10240100 0.9 .49 .01 .07 .99 .04 .99 .02 .08 .008 .002 .023 .001	Customer: Stock Date: August 16, 2013 Invoice Number: 130009L Lot Number: 16,233 Pcs. Pescription: 5/8" x 10" G.R. Heat 10240100 10,820 PASSED & CERTATED Bolt Numbers: 10231650 5,413 PASSED & CERTATED Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY Trinity Highway Products. LLC Dallas, Texes Fillen 09 Heat C MN P S SI NI CR MO CU SN V AL N B TI NB 240100 09 49 01 007 09 04 05 02 08 008 002 023 005 0001 001 001 231660 09 49 008 011 09 05 08 02 09 006 002 023 005 0001 001 001 231660 09 49 008 011 09 05 08 02 09 006 002 023 005 0001 001 001 231660 09 49 008 011 09 05 08 02 09 006 002 023 005 0001 001 001 PLATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickness / Mils) 2.51 (20 Mile Minimum) ****THIS FRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A YE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CURRECT. MUTUAL WAY PRODUCTS LLC STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19 ⁴ Augu August 10 ⁴ Mightangeness STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19 ⁴ Augu August 10 ⁴ Mightangeness MUTUAL MICH MIGHNARY PUBLIC 425 E. O'CONNOR AVENUE LIMA, OHIO 45801 MIGHTAL AND AND AND ALTARED																	
Invoice Number:	Invoice Number: 130809L Lot Number: 16,233 Pcs. Description: 6/8" x 10" G.R. Heat 10240100 10,820 PASSED & CERTIFIED Boit Numbers: 10231650 5,413 PASSED & CERTIFIED Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY Boit MUG 2 0 70% MATERIAL CHEMISTRY MATERIAL CHEMISTRY Thity Highway Products LLC Dalias, Texas Fiant 99 Heat C MN P SI NI CR MO CU SN V A N B TI NB 240100 0.9 .49 .01 .007 .09 .04 .09 .02 .08 .002 .023 .005 .001 .001 .001 231650 .09 .49 .008 .011 .09 .08 .02 .09 .006 .002 .023 .007 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001						MA	TERI	ALC	ERT	IFIC	ATIO	N					
Part Number: 3500G Quantity: 16,233 Pcs. Description: 5/8" x 10" G.R. Heat 10231650 5,413 PASSED & CERTIFIED Boit Numbers: 10231650 5,413 PASSED & CERTIFIED Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY Passes F.ant 29 Matterial C MN P Si NI CR MO CU SN V AL N B Tinity Highway Products LLC Dalias, Texas F.ant 293 Matterial USED 0.09 .04 .09 .02 .08 .002 .023 .005 .001	Lot Number: 130609L Quantity: 16,233 Pcs. Description: 578" x 10" G.R. Heat Bolt Numbers: 10231650 5,413 Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY Heat C MN P S SI NI CR MO CU SN V AL N B TI NB 240100 .09 .49 .01 .007 .09 .04 .08 .02 .08 .008 .002 .023 .005 .0001 .001 .001 231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .005 .0001 .001 .001 231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .0001 .001 .001 231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .0001 .001 .001 231650 LOT DIP GALVANIZED (Lot Ave.Thickness / Mils) 2.51 .(2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELITED AND MANUFACTURED IN THE U.S.A VE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. MUTUL BY CONNOT AVENUE LIMA, OHIO 45801 425 E. O'CONNOR AVENUE LIMA, OHIO 45801	Custo	omer:		Stock						Date:	Aug	ust 16,	2013	0			
Part Number: 3500G Quantity: 16,233 Pcs. Description: 5/8" x 10" G.R. Heat 10240100 10,820 PASSED & CENTIFIED Boit Numbers: 10231650 5,413 PASSED & CENTIFIED Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY AUG 2 0 73/3 Trinity Highway Products LLC Dallas, Texas Fisht 99 Heat C MIN P S SI NI CR MO CU SN V AL N B TI NB 10240100 0.9 49 0.1 0.007 0.9 0.4 0.9 0.2 0.8 0.008 0.002 0.23 0.05 0.001 0.01 0.01 10231650 0.9 49 0.08 0.01 0.9 0.5 0.6 0.02 0.9 0.06 0.02 0.23 0.07 0.001 0.01 0.01 10231650 0.9 49 0.08 0.01 0.9 0.5 0.6 0.02 0.9 0.06 0.02 0.23 0.07 0.001 0.01 0.01 10231650 0.9 49 0.08 0.01 1.9 0.5 0.6 0.02 0.9 0.06 0.02 0.23 0.07 0.001 0.01 0.01 10231650 0.9 49 0.08 0.01 1.9 0.5 0.6 0.02 0.9 0.06 0.02 0.23 0.07 0.001 0.01 0.01 10231650 0.9 49 0.08 0.01 1.9 0.5 0.6 0.02 0.9 0.06 0.02 0.23 0.07 0.001 0.01 0.01 10231650 0.9 49 0.08 0.01 1.9 0.5 0.6 0.02 0.9 0.06 0.02 0.23 0.07 0.001 0.01 0.01 10231650 0.9 49 0.08 0.01 0.9 0.5 0.6 0.02 0.9 0.06 0.02 0.23 0.07 0.001 0.01 0.01 10231650 0.9 49 0.08 0.01 0.9 0.5 0.6 0.02 0.9 0.06 0.02 0.23 0.07 0.001 0.01 0.01 10231650 0.9 49 0.08 0.01 0.9 0.5 0.6 0.02 0.9 0.06 0.02 0.23 0.07 0.001 0.01 0.01 10231650 0.9 49 0.08 0.01 0.9 0.5 0.6 0.02 0.9 0.06 0.02 0.23 0.07 0.001 0.01 0.01 10231650 0.9 49 0.08 0.01 0.9 0.5 0.6 0.02 0.9 0.06 0.02 0.23 0.07 0.001 0.01 0.01 10231650 0.9 49 0.08 0.01 0.9 0.5 0.6 0.02 0.9 0.06 0.02 0.23 0.07 0.001 0.01 0.01 10231650 0.9 49 0.08 0.01 0.9 0.5 0.6 0.02 0.9 0.06 0.02 0.23 0.07 0.001 0.01 0.01 PLATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickness / Mills) 2.51 (2.0 Mills Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE US.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CURRECT. MUTUAL AND AND SUBSCRIBED BEFORE ME THIS 19 ⁴ Aug	Art Number: 3500G Quantity: 16,233 Pcs. Description: 5/8" x 10" G.R. Heat 10240100 10,820 PASSED & CENTERED Boit Numbers: 10231650 5,413 PASSED & CENTERED Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY AUG 2 0 70% Trinity Highway Products, LLC Dallas, Texas F.ant 99 teat C MN P SI NI CR MO CU SN V AL N B TI NB teat C MN P SI NI CR MO CU SN V AL N B TI NB teat C MN P SI NI CR MO CU SN V AL N B TI NB teat C MN O.007 .09 .04 .09 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																	
Description: 5/8" x 10" G.R. Bolt Heat Numbers: 10240100 10,820 PASSED & CENTIFIED Specification: ASTM A307-A / A153 / F2329 AUG 2 0 70% Trinity Highway Products. LLC Dallas, Texas AUG 2 0 70% Heat C MN P S N CR MO CU SN V AL N B TI NB 10240100 .09 .49 .01 .007 .09 .04 .09 .02 .08 .008 .002 .023 .005 .001 .	Description: 5/8" x 10" G.R. Boit Heat Numbers: 10231650 5,413 PASSED & CENTIFIED Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY AUG 2 0 70'0 MATERIAL CHEMISTRY Dellos, Texas F.ent 99 teat C MN P SI NI CR MO CU SN V AL N B TI NB 240100 .09 .04 .09 .02 .08 .008 .002 .023 .005 .001								L									
Description: Bolt Numbers: 10231650 5,413 PASSED & CENTIFIED Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY AUG 2 0 7013 Trinky Highway Products LLC Dallas, Texas F.ant 93 Heat C MN P S SI NI CR MO CU SN V AL N B TI NB 10240100 .09 .49 .01 .007 .09 .04 .05 .02 .08 .008 .002 .023 .005 .0001 .001 .001 10231650 .09 .49 .01 .007 .09 .04 .05 .02 .08 .002 .023 .005 .0001 .001 .001 10231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .001 .001 .001 PLATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickness / Mils) _2.51 (2.0 Mils Minimum) <	Boit Numbers: 10231650 5,413 PASSED & CERTIFIED Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY MUG 2 0 73% Matterial C MN P S NI CR MO CU SN V AL N B Tinity Highway Products LLC Dallas, Texas France 99 Matterial CHEMISTRY Dallas, Texas France 99 Heat C MN P S SI NI CR MO CU SN V AL N B TI NB 240100 .09 .04 .09 .02 .08 .008 .002 .023 .005 .001 .001 .001 231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .001 .001 231650 .09 .49 .008 .011 .09 .02 .02 .09 .006 .002 .023 .007 .001 .001 <td></td> <td></td> <td></td> <td></td> <td>100.00</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>3</td> <td>Pcs.</td> <td></td> <td></td> <td></td>					100.00					-			3	Pcs.			
Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY MATERIAL CHEMISTRY Trinity Highway Products LLC Dellas, Texas Dellas, Texas AUG 2 0 7373 Trinity Highway Products LLC Dellas, Texas Dellas, Texas Heat C MATERIAL CHEMISTRY Trinity Highway Products LLC Dellas, Texas Dellas, Texas 1000 1000 1000 DELATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave. Thickness / Mils) 2.51 (20 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE US.A We HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. MUCL MUCL MUCL MUCL AUG COLSPAN MUCL MUCL </td <td>Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY Heat C MN P S SI NI CR MO CU SN V AL N B TI NB 240100 .09 .49 .01 .007 .09 .04 .09 .02 .08 .002 .023 .005 .0001 .001</td> <td>Descrip</td> <td>otion:</td> <td>5/8"</td> <td>x 10"</td> <td>G.R.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>PASSI</td> <td>ib a ci</td> <td>ERTIFI</td> <td>ED</td>	Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY Heat C MN P S SI NI CR MO CU SN V AL N B TI NB 240100 .09 .49 .01 .007 .09 .04 .09 .02 .08 .002 .023 .005 .0001 .001	Descrip	otion:	5/8"	x 10"	G.R.									PASSI	ib a ci	ERTIFI	ED
Specification: ASTM A307-A / A153 / F2329 Trinity Highway Products, LLC Dallas, Texas MATERIAL CHEMISTRY Dallas, Texas Heat C MN P S SI NI CR MO CU SN V AL N B TI NB 10240100 .09 .49 .01 .007 .09 .04 .09 .02 .08 .008 .002 .023 .005 .001 .001 .001 10231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .0001 .001 .001 10231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .0001 .001 .001 FLATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickness / Mils) 2.51 (20 Mils Minimum) *****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** STATE OF OHIO, COUNTY OF ALLEN Or OF	Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY Trinity Highway Products, LLC Dallas, Texas Dallas, Texas Fight 29 MATERIAL CHEMISTRY Texas MATERIAL CHEMISTRY Texas PLATING OR PROTECTIVE COLSPAN AUTOR OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickness / Mils) 2.51 AUTOR OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickness / Mils) 2.51 AUTOR OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickness / Mils) 2.51 AUTOR OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickness / Mils) 2.51 AUTOR OF OULT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THE SPODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A Yeare of OHIO, COUNTY OF ALLEN STATE OF OHIO, COUNTY OF ALLEN STATE OF OHIO, COUNTY OF ALLEN STA				DOIL		Num	nela.		102.	31030	,~	715	In				
MATERIAL CHEMISTRY Trinity Highway Products LLC Dallas, Texas Heat C MN P S SI NI CR MO CU SN V AL N B TI NB 10240100 .09 .49 .01 .007 .09 .04 .09 .02 .08 .002 .023 .005 .0001 .001 .001 10231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .001 .001 .001 10231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .001 .001 .001 10231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .001 .001 .001 .001 PLATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickmess / Mils) _2.51 (2.0 Mils Minimum)	MATERIAL CHEMISTRY Trinity Highway Products LLC Dallas, Texas Jeat C MN CR MO CU SN V AL N Heat C MN C MO CU SN V AL N Add to 1 OO	Spe	cifica	tion:	ASTN	1 A307	-A/A	153 / 1	F2329)				家	AU	G 20	2013	
MATERIAL CHEMISTRY Dallas, Texas Filmt 09 Heat C MN P S SI NI CR MO CU SN V AL N B TI NB 10240100 .09 .49 .01 .007 .09 .04 .09 .02 .08 .008 .002 .023 .005 .001	Heat C MN P S SI NI CR MO CU SN V AL N B TI NB 240100 .09 .49 .01 .007 .09 .04 .09 .02 .08 .008 .002 .023 .005 .0001 .001 .001 231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .001 .001 .001 231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .001 .001 .001 231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .002 .023 .007 .001 .001 .001 231650 .09 .49 .008 .001 .01 .01 .01 .01 .01 .01 .01 .01 .01 .02 .023 <td></td> <td>Trin</td> <td>ity Hig</td> <td>hway P</td> <td>roduct</td> <td>s, LLC</td>													Trin	ity Hig	hway P	roduct	s, LLC
10240100 .09 .49 .01 .007 .09 .04 .09 .02 .08 .008 .002 .023 .005 .001 .001 .001 10231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .001 .001 .001 10231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .001 .001 .001 10231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .001 .001 .001 101 .00 .00 .00 .00 .00 .00 .001 <td< td=""><td>240100 .09 .49 .01 .007 .09 .04 .09 .02 .08 .008 .002 .023 .005 .001 .001 .001 231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .001 .001 .001 231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .001 .001 .001 231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .001 .001 .001 231650 .09 .008 .02 .09 .006 .002 .023 .007 .001 .001 .001 PLATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickness / Mils) 2.51 (2.51 (2.60 .001 .001 .001 .001 .001 .011 .011</td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>v</td><td></td><td></td><td></td><td></td><td></td></td<>	240100 .09 .49 .01 .007 .09 .04 .09 .02 .08 .008 .002 .023 .005 .001 .001 .001 231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .001 .001 .001 231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .001 .001 .001 231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .001 .001 .001 231650 .09 .008 .02 .09 .006 .002 .023 .007 .001 .001 .001 PLATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickness / Mils) 2.51 (2.51 (2.60 .001 .001 .001 .001 .001 .011 .011		0										v					
10231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .001 .001 .001 PLATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickness / Mils) _2.51 (20 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. Junct Junct STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS Junct Junct August Manufacture August Manufacture Junct Junct <tr< td=""><td>231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .0001 .001 .001 PLATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickness / Mils) _2.51 (2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A VE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19th day of Aug MUCL MUCL Aug Aug <td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></td></tr<>	231650 .09 .49 .008 .011 .09 .05 .08 .02 .09 .006 .002 .023 .007 .0001 .001 .001 PLATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickness / Mils) _2.51 (2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A VE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19 th day of Aug MUCL MUCL Aug Aug <td></td> <td>1</td> <td></td> <td></td> <td></td>														1			
PLATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave. Thickness / Mils)	PLATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave. Thickness / Mils)	1																
HOT DIP GALVANIZED (Lot Ave. Thickness / Mils) 2.51 (2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19th SWORN AND SUBSCRIBED BEFORE ME THIS 19th Murue Motary PUBLIC 425 E. O'CONNOR AVENUE LIMA, OHIO 45801	HOT DIP GALVANIZED (Lot Ave. Thickness / Mils) 2.51 (2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A VE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS						100	144	100	101	100			.0.20				.051
HOT DIP GALVANIZED (Lot Ave. Thickness / Mils) 2.51 (2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19th Muci, Mram. NOTARY PUBLIC 425 E. O'CONNOR AVENUE	HOT DIP GALVANIZED (Lot Ave. Thickness / Mils) 2.51 (20 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A VE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS					_												
HOT DIP GALVANIZED (Lot Ave. Thickness / Mils) <u>2.51</u> (2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. TRINITY HIGHWAY PRODUCTS LLC TRINITY HIGHWAY PRODUCTS LLC STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS <u>19</u> th dow of Augurent Motary PUBLIC 425 E. O'CONNOR AVENUE LIMA, OHIO 45801	HOT DIP GALVANIZED (Lot Ave. Thickness / Mils) 2.51 (2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A VE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS																	
****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19th day of Augustican Express MULTINITY HIGHWAY PRODUCTS LLC STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19th day of Augustican Express August Arcan 425 E. O'CONNOR AVENUE LIMA, OHIO 45801	****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A VE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19th day of the this of the the this 19th day of the the this 19th day of the the the this 19th day of the the the this 19th day of the		[P	LATE	NGOR	PRO	TECT	TVE C	OATI	NG					
THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. JULY HUBHWAY PRODUCTS LLC STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS JULY HUBHWAY PRODUCTS LLC WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. JULY HUBHWAY PRODUCTS LLC STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS JULY HUBHWAY PRODUCTS LLC JULY HUBHWAY PRODUCTS LLC JULY HUBHWAY PRODUCTS LLC JULY HUBHWAY PRODUCTS LLC STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS JULY HUBHWAY JULY HUBHWAY JULY HUBHWAY SWORN AND SUBSCRIBED BEFORE ME THIS JULY HUBHWAY JULY HUBHWAY <	THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A VE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. JULT HIGHWAY, PRODUCTS LLC STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19th Jourgan MUCL, Braun NOTARY PUBLIC 425 E. O'CONNOR AVENUE LIMA, OHIO 45801	HOT D	PGAL	VANIZ	ED (Lo					TECT				Minimur	n)			
WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT.	VE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19th day of August 19th and the subscribed before me this 19th day of August 19th and the subscribed before me this 19th day of August 19th and the subscribed before me this 19th day of August 19th and the subscribed before me this 19th day of August 19th and the subscribed before me this 19th day of August 19th and the subscribed before me this 19th day of August 19th and the subscribed before me this 19th day of August 19th and the subscribed before me this 19th day of August 19th and the subscribed before the this 19th day of August 19th and the subscribed before the this 19th day of August 19th and the subscribed before the this 19th day of August 19th and the subscribed before the this 19th day of August 19th and the subscribed before the this 19th day of August 19th and the subscribed before the this 19th day of August 19th and the subscribed before the the sub	HOT DI				t Ave.T	hickne	ss / Mil	s)		2.	51	(2.0 Mils			****		
STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19th day of August 2000/1012 Shurt Brann NOTARY PUBLIC 425 E. O'CONNOR AVENUE LIMA, OHIO 45801 41907-4296	STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19th day of Aug wor, Brann NOTARY PUBLIC NOTARY PUBLIC 425 E. O'CONNOR AVENUE LIMA, OHIO 45801		***	*THIS	PROD	t Ave.T UCT W	hickne AS MA	ss / Mii NUFAC	s) CTURE	D IN TI	2. HE UNI	51 TED ST	(2.0 Mils FATES	OF AM	ERICA			
STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19th day of Art Control of the solution of	STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19th day of Aug word Brann NOTARY PUBLIC 425 E. O'CONNOR AVENUE LIMA, OHIO 45801		*** THE N	"*THIS IATER	PROD	t Ave.T uct w sed in	hickne AS MA THIS P	ss / Mil NUFAC RODU	s) CTURE CT WA	D IN TI S MEL	2.) HE UNI TED AI	51 ITED ST	(2.0 Mils FATES NUFAÇ	OF AM TUREI	ERICA D IN TH	Œ U.S.		N IS
STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19th day of Art Control of the solution of	STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19th day of Aug word Brann NOTARY PUBLIC 425 E. O'CONNOR AVENUE LIMA, OHIO 45801		*** THE N	"*THIS IATER	PROD	t Ave.T uct w sed in	hickne AS MA THIS P	ss / Mil NUFAC RODU	s) CTURE CT WA OUR KI	D IN TI S MEL NOWLE	2. HE UNI TED AI IDGE A	51 ITED ST	(2.0 Mils FATES NUFAÇ	OF AM TUREI	ERICA D IN TH	Œ U.S.		N IS
STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19th day of Art Control of the solution of	STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 19th day of Aug word Brann NOTARY PUBLIC 425 E. O'CONNOR AVENUE LIMA, OHIO 45801		*** THE N	"*THIS IATER	PROD	t Ave.T uct w sed in	hickne AS MA THIS P	ss / Mil NUFAC RODU	s) CTURE CT WA OUR KI	D IN TI S MEL NOWLE	2. HE UNI TED AI IDGE A	51 ITED ST	(2.0 Mils FATES NUFAÇ	OF AM TUREI	ERICA D IN TH	Œ U.S.		N IS
SWORN AND SUBSCRIBED BEFORE ME THIS 19th day of Aug Control And Subscribed Before ME THIS 19th day of Aug Control and Subscribes A Aug Control and Subscribes A Aug Control and Subscribes A Aug Control and A	SWORN AND SUBSCRIBED BEFORE ME THIS 19th day of Aus 200 MBPUISUO WWG Brann NOTARY PUBLIC 200 MILLIO 425 E. O'CONNOR AVENUE LIMA, OHIO 45801 419027-1295-1		*** THE N	"*THIS IATER	PROD	t Ave.T uct w sed in	hickne AS MA THIS P	ss / Mil NUFAC RODU	s) CTURE CT WA OUR KI	D IN TI S MEL NOWLE	2. HE UNI TED AI IDGE A	51 ITED ST ND MAJ	(2.0 Mils FATES NUFAC FORMA	OF AM	ERICA D IN TH CONTA	IE U.S.A	HEREI	N IS
425 E. O'CONNOR AVENUE LIMA, OHIO 45801 419027-1296	425 E. O'CONNOR AVENUE LIMA, OHIO 45801	WE HER	*** THE N EBY CI	**THIS AATEP ERTIF	PROD RIAL US Y THAT	t Ave.T UCT W SED IN F TO TI	hickne AS MA THIS P HE BES	ss / Mil NUFAC RODU	s) CTURE CT WA OUR KI	D IN TI S MEL NOWLE	2. HE UNI TED AI IDGE A	51 ITED ST ND MAJ	(2.0 Mils FATES NUFAC FORMA	OF AM	ERICA D IN TH CONTA	IE U.S.A	HEREI	N IS
425 E. O'CONNOR AVENUE LIMA, OHIO 45801 419 027-1296	425 E. O'CONNOR AVENUE LIMA, OHIO 45801 415 027-1295-14	WE HER	THE N EBY CI	**THIS LATER ERTIF	PROD RIAL US Y THAT	t Ave.T UCT W SED IN F TO TI	hickne AS MA THIS P HE BES LLEN	ss / Mil NUFAC PRODUC ST OF C	s) CTURE CT WA OUR KI	D IN TI S MEL NOWLE	2. HE UNI TED AI IDGE A	51 ITED ST ND MAJ	(2.0 Mils FATES NUFAC FORMA	OF AM	ERICA DIN TH CONTA	UNED I	HEREI	N IS
Star CONTRACT	STAN CONF	WE HER	THE N EBY CI TE OF (N AND :	THIS ATER ERTIF DHIO, 0 SUBSC	PROD RIAL US Y THAT COUNT CRIBED	t Ave.T UCT W SED IN F TO TI	hickne AS MA THIS P HE BES HE BES LLEN RE ME	SS / MII NUFAC PRODUC ST OF C	s) CTURE CT WA UR KI COP	D IN TI S MEL NOWLE RECT.	2. HE UNI TED AI IDGE A	51 ITED ST ND MAJ	(2.0 Mils FATES NUFAC FORMA	OF AM	ERICA DIN TH CONTA	UNED I	HEREI	N IS
		WE HER	THE N EBY CI TE OF (N AND :	THIS TATER ERTIF DHIO, 0 SUBSC	COUNT CRIBED	t Ave.T UCT W SED IN F TO TI Y OF A BEFO	hickne AS MA THIS P HE BES LLEN RE ME	SS / MII NUFAC RODUC TOFO	s) CTURE CT WA DUR KI COR L9 RY PUE	D IN TI S MEL' NOWLE RECT.	2.1 HE UNI TED AL IDGE A	TED ST ND MAD LL INF TRIN	(2.0 Mils FATES NUFAC FORMA	OF AM	ERICA DIN TH CONTA	UNED I	HEREI	N IS
		WE HER	THE N EBY CI TE OF (N AND :	THIS TATER ERTIF DHIO, 0 SUBSC	COUNT CRIBED	t Ave.T UCT W SED IN F TO TI Y OF A BEFO	hickne AS MA THIS P HE BES LLEN RE ME	SS / MII NUFAC RODUC TOFO	s) CTURE CT WA DUR KI COR L9 RY PUE	D IN TI S MEL' NOWLE RECT.	2.1 HE UNI TED AL IDGE A	TED ST ND MAD LL INF TRIN	(2.0 Mils FATES NUFAC FORMA	OF AM TUREL TION SHWAY	ERICA DIN TH CONTA	UCTS	HEREI	N IS
		WE HER	THE N EBY CI TE OF (N AND :	THIS TATER ERTIF DHIO, 0 SUBSC	COUNT CRIBED	t Ave.T UCT W SED IN F TO TI Y OF A BEFO	hickne AS MA THIS P HE BES LLEN RE ME	SS / MII NUFAC RODUC TOFO	s) CTURE CT WA DUR KI COR L9 RY PUE	D IN TI S MEL' NOWLE RECT.	2.1 HE UNI TED AL IDGE A	TED ST ND MAD LL INF TRIN	(2.0 Mils FATES NUFAC FORMA	OF AM TUREL TION SHWAY	ERICA DIN TH CONTA	UCTS	HEREI	N IS
		WE HER	THE N EBY CI TE OF (N AND :	THIS TATER ERTIF DHIO, 0 SUBSC	COUNT CRIBED	t Ave.T UCT W SED IN F TO TI Y OF A BEFO	hickne AS MA THIS P HE BES LLEN RE ME	SS / MII NUFAC RODUC TOFO	s) CTURE CT WA DUR KI COR L9 RY PUE	D IN TI S MEL' NOWLE RECT.	2.1 HE UNI TED AL IDGE A	TED ST ND MAD LL INF TRIN	(2.0 Mils FATES NUFAC FORMA	OF AM TUREL TION SHWAY	ERICA DIN TH CONTA	UCTS	HEREI	N IS

Figure A-23. 5%-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8

						0.000			uard							
و و ا	1				1	- Ju	ne 2	2015	SMT	Whi	te I	Pain	t	(2)	sc	206
					e.											
		TR	INIT	152 Salt - N	· · · · · · · · · · · · · · · · · · ·	· 같아. 아이지 않는	Sec. 45 W.	Marsh Sec.	s, LL	C			-			
						Dhio 4	nor Av 5801	е.				2	V		7	
					160	227-12							-			
Υ.			÷		MA	TER	LAL (ERI	IFIC	ATIO	N	:			1	1311
Custo	omer:	ľ	Stock	; 	-				Date.		ne 25,2	2014			1	/
									mber:				<u></u> 			
art Nu	nhar	(*)	35000	8	1		1	-19 41 19 1922	mber	A.	No office and	1	Daa			
	9.17 A		x 10"	<u> </u>	He	at			antity: 97970	1000000000000000	and the second	1	Pcs.		1 1 200	
Descrij	otion:	3/0	Bolt	U.N.	E. C.	bers:			and the second		-	1	-			an a the
0297970	.09	,33	.006	.001	.06	.03	.04	.01	.08	.002	.001	.026	:008	.0001	.001	.002
						2										
$\mathbb{R}^{1,0}_{1,2}(\mathbb{R}_{2})$		2.0							ļ							
The second secon																
*2797** 														 		
HOT D	** THE	VANIZ **THIS MATER ERTIE	PROD UAL U	l Ave.T UCT W	hickne /AS MA THUS I	ss / Mi NUFA RODU	IS) CTURE CT WA	D IN T S MEL	HE UN /TED A EDGE /	54 ITED S	(2.0 Mil) TATES NUFÀO	CTURE	IERIC. D IN T	HE U.S.		IN IS
HOT D	** THE	**THIS MATEP	PROD UAL U	l Ave.T UCT W	hickne AS MA THIS I	ss / Mi NUFA RODU	IS) CTURE CT WA	D IN T S MEI NOWL	2. HE UN JTED A	54 ITED S ND MA ALL IN	(2.0 MIII TATES NUFAC	OF AN	DINT CONT	HE U.S. AINED	HEREI	N IS
	** THE	**THIS MATEP	PROD UAL U	l Ave.T UCT W	hickne AS MA THIS I	ss / Mi NUFA RODU	IS) CTURE CT WA	D IN T S MEI NOWL	2. HE UN JTED A	54 ITED S ND MA ALL IN	(2.0 MIII TATES NUFAC	of An Sture	DINT CONT	HE U.S. AINED	HEREI	IN IS
HOT D	** THE EBY C	**THIS MATER ERTIE OHIO,	: PROD TAL U Y THA Y THA	t Ave,] UCT W SKD UN I TO T T O T	hiskne /AS M/ THIS I HIJ BIS	ss / Mi NUFA RODU ST OF (IS) CTURE CT WA	D IN T S MEI NOWL	2. HE UN JTED A	54 ITED S ND MA ALL IN	(2.0 MIII TATES NUFAC	OF AN	DINT CONT	HE U.S. AINED	HEREI	IN IS
HOT D WE HER STA	** THE EBY C	**THIS MATER ERTIE OHIO,	PROD UAL U Y THA Y THA COUNT CRIBEL	t Ave,] UCT W SKD UN I TO T T O T	hiskne /AS M/ THIS I HIJ BIS	ss / Mi nufa Rodu St Of (IS) CTURE CT WA	Ð IN T SMEL NOWL RECT	2. HE UN JTED A	54 ITED S ND MA ALL IN	(2.0 MIII TATES NUFAC	OF AN	DINT CONT	HE U.S. AINED	HEREI	N IS

Figure A-24. 5/8-in. by 10-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8

CHANCIER	CHARTER STEEL
	A Division of Charter Manufacturing Company, Inc.

LOAD

1658 Cold Springs Road Sauktille, Wisconsin 53080 (262) 268-2400 1-800-437-8789 Fax (262) 268-2570

CHARTER STEEL TEST REPORT

Melted in USA Manufactured in USA

				1		Cust P.O. mer Part #					P370
						mer Part #					
											1000
					I Charler S	ales Order					700758
						Heat #					204607
						Ship Lot #					32421
Rockford B	nit & Sh	eel				Grade				1010 4 4	K FG RHQ 19/
126 Mill St.	un a ott					Process				TOTOAA	HRS
Rockford,IL	-61101					Finish Size					19/
Kind Attn :L		·				Ship date					01-NOV-
Kind Add 31	.inda wi	coomas				Ship date					01-100-
hereby certily that the ma	aterial des	cribed her	ein has bee	en manufac	tured in acco	rdance with th	na specific	ations and s	tandards lis	tad below ar	nd that it satisfies
nese requirements. The r	ecording o	of false, fic	titious and	fraudulent	statements or	entries on thi	is docume	nt may be p	unishable a	s a felony un	nder lederal statu
				Test	results of Hea	t Lot # 204607	760				
ab Code: 125544		100	Р		~						
CHEM C		MN .33	.006	S .003	.SI .060	NI .03	CR .06	MO .01	.08	SN .006	V .001
AL		N	В	TI	NB	.05	.00	.01	.00	.000	.001
.02		.0070	.0001	.001	,901						
				Test	sults of Rolli	ng Lot # 2110	397				
14.1											
REDUCTION RATIO	=177:1										
											in the second
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification	oroduct is the for the one with a A29/A29M	ly Manual Re Indistinguish presence of ny applicable Revis	able from ba radiation with	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
• • • • • • • • • • • • • • • • • • •	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti	ocess & pro ons for the	oducts.		
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti aled = 01	ocess & pro one for the NOV-15	ducts. following c	sustomer de	ocuments:
	Charter detector Meets c Custom	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti aled = 01	ocess & pro one for the NOV-15	ducts. following c	ousty dated	
Additional Comments: Mell Source: Charter Steel	Charter detector Meets C Gustom MELTEC	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al excepti aled = 01	ocess & pro one for the NOV-15	ducts. following c	sustomer de	ocuments:
	Charter detector Meets C Gustom MELTEC	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	able from ba radiation with Charter Ste	ackground hin our pr al except ated = 01	ocess & pro one for the NOV-15	following of the sell previous	ously dated Sament	MTRs for this or
Additional Comments: Mell Source: Charter Steel	Charter detector Meets C Gustom MELTEC	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	indistinguish presence of i ny applicable	lable from be radiation with Charter Ste ion = 15 D	ackground hin our pr al except ated = 01	ocess & pro one for the NOV-15	ies all previ following c	ously dated 3uneuf Mgr. of Qual	MTRs for this or
Additional Comments: Mell Source: Charter Steel	Charter detector Meets C Custom MELTEC	Steel cert rs In place ustomer s er Docume	ifies this p to measu specification t = ASTM	oroduct is the for the one with a A29/A29M	Indistringuish presence of ny applicable Revis	lable from be radiation with Charter Ste ion = 15 D	ackground hin our pr al except ated = 01	ocess & pro one for the NOV-15 TR.supersec ianice Barna bt	des all previ Service Service rid Division ranardJ@ch	ously dated Sament	MTRs for this or ity Assurance ity

Figure A-25. ⁵/₈-in. by 1¹/₄-in. Long Guardrail Bolts, Test Nos. MGSC-7 and MGSC-8

Birmingham Fastener Manufacturing

P.O. Box 10323 Birmingham, Alabama 35202 (205) 595-3512

Pg 1 of 1

Certificate of Compliance

Customer :	Midwest Machinery & Supply	BFM # :	1338859
P.O. #:	3275	Date Shipped :	6/16/2016

	Quantity	Description	Lot#	Heat #	Specification	Finish
1	104	5/8"-11 x 8" HEX BOLT	208976	DL15107048	ASTM A307 Gr A	HDG
2	157	5/8"-11 x 10" HEX BOLT	208977	DL15107048	ASTM A307 Gr A	HDG
3	402	7/8"-9 x 16" Hex Bolt	208978	JK15100276	ASTM A307 Gr A	HDG
4	67	7/8"-9 X 26" Hex Bolt	208979	JK15100276	ASTM A307 Gr A	HDG

Birmingham Fastener Manufacturing. hereby certifies that the material furnished in reference to the above purchase order number will meet or exceed the above assigned specifications.

Signed:

Brian Hughes

Date: 06/15/2016

R#16-692 5/8"x10" BCT Hex Bolts Orange Paint H#DL15107048 June2016 SMT

Figure A-26. 5%-in. by 10-in. Long Hex Bolt, Test Nos. MGSC-7 and MGSC-8

R#16-0217

BCT Hex Nuts December 2015 SMT

22979 Stelfast Parkway Strongsville, Ohio 44149 Fastenal part#36713

44149 Control# 210101523

CERTIFICATE OF CONFORMANCE

DESCRIPTION OF MATERIAL AND SPECIFICATIONS

- Sales Order #: 129980
- Part No: AFH2G0625C
- Cust Part No: 36713
- Quantity (PCS): 1200
- Description: 5/8-11 Fin Hx Nut Gr2 HDG/TOS 0.020
- Specification: SAE J995(99) GRADE 2 / ANSI B18.2.2
- Stelfast I.D. NO: 595689-0201087
- Customer PO: 210101523
- Warehouse: DAL

The data in this report is a true representation of the information provided by the material supplier certifying that the product meets the mechanical and material requirements of the listed specification. This certificate applies to the product shown on this document, as supplied by STELFAST INC. Alterations to the product by our customer or a third party shall render this certificate void.

This document may only be reproduced unaltered and only for certifying the same or lesser quantity of the product specified herein. Reproduction or alteration of this document for any other purpose is prohibited.

Stelfast certifies parts to the above description. The customer part number is only for reference purposes.

David Biss

Quality Manager

December 07, 2015

Page 1 of 1

Figure A-27. %-in. Hex Nuts, Test Nos. MGSC-7 and MGSC-8

CERTIFIED MATERIAL TEST REPORT FOR ASTM A307, GRADE A - MACHINE BOLTS

 FACTORY:
 NINGBO ECONOMIC & TECHNICAL DEVELOPMENT REPORT DATE:2016/12/29

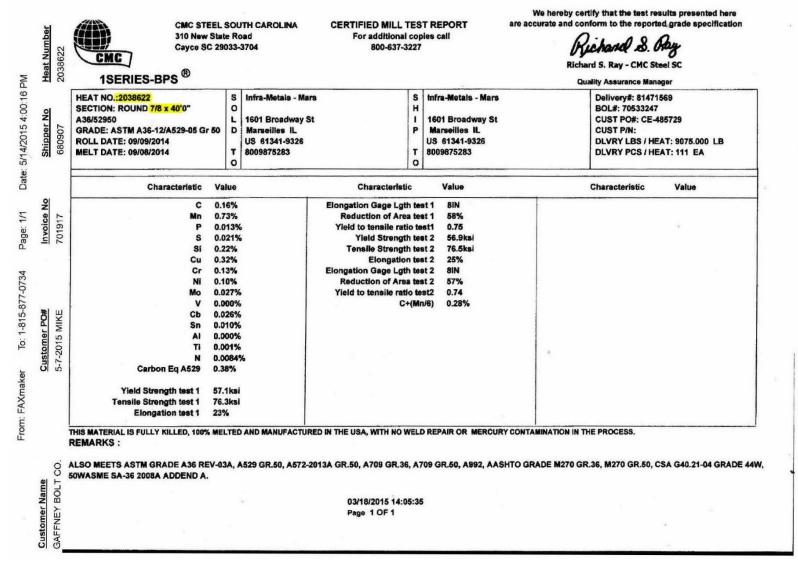
 ZONE YONGGANG FASTENERS CO., LTD.
 R#17-507 H#816070039

 ADDRESS:
 FuShan South Road No.17,BeiLun NingBo China BCT Cable Bracket Bolts

MANUFACTURE DATE:2016/12/2

TEL#(852)25423366 CUSTOMER: FASTENAL MFG LOT NUMBER:M-2016HT927-9 SAMPE SIZE: ACC.TO Dimension:ASME B18.18-11;Mechanical Properties:ASTM F1470-12 MANU QTY: 4800PCS SHIPPED QTY: 4800PCS SIZE: 5/8-11X1 1/2 HDG HEADMARKS: 307A PLUS NY PO NUMBER:220023115

PART NO:1191919


STEEL PROPERTIES: MATERIAL TYPE:Q195

HEAT NUMBER: 816070039

CHEMISTRY SPEC:		C %*100	Mn%*100	P %*1000	S %*1000			
Grade A ASTM A307-12		0.29max	1.20 max	0.04max	0.15max			
TEST:		0.07	0.28	0.016	0.003			
DIMENSIONAL INSPECT	LIONS	Unit:	inch		SPECIFICA	TION: ASM	ME B18.2.1	- 2012
CHARACTERISTICS		SPEC	LIFIED		ACTUAL	RESULT	ACC.	REJ.
***********	*****	*******	*******	******	******	******	******	******
VISUAL		ASTM F78	38-2013		PASS	SED	22	0
THREAD		ASME B1.	1-2003,3A C	O,2A NOGO	PASS	SED	15	· 0
WIDTH FLATS		0.900	5-0.938		0.915	-0.928	4	0
WIDTH A/C		1.033	3-1.083		1.048	1.057	4	0
HEAD HEIGHT		0.378	8-0.444		0.394	-0.424	4	0
THREAD LENGTH		1.420	0-1.560		1.435	-1.541	15	0
LENGTH		1.420	0-1.560		1.435	-1.541	15	0
MECHANICAL PROPER'	TIES:			SPECIFICA	TION: ASTI	M A307-201	2 GR-A	
CHARACTERISTICS	TEST M	ETHOD	SPEC	CIFIED	ACTUAL	RESULT	ACC.	REJ.
*********	******	******	******	******	******	*******	*****	******
CORE HARDNESS :	ASTM F60	6-2014	69-10	0 HRB	76-79	HRB	4	0
WEDGE TENSILE:	ASTM F60	6-2014	Min	60 KSI	65-69	9 KSI	4	0
CHARACTERISTICS	TEST M	ETHOD	SPEC	CIFIED	ACTUAL	RESULT	ACC.	REJ.
COATINGS OF ZINC:			SPECIFIAT	TON:ASTM	F2329-2013			
HOT DIP GALVANIZED	ASTM B56	8-98(2104)).0017"		-0.0018"	4	0
ALL TESTS IN ACCO)RDANCE	WITH	THE METH	ODS PRESC	CRIBED IN	THE APP	PLICABLE	
ASTM SPECIFICATION				DATA IS A				
INFORMATION PROVID Maker's ISO#	DED BY T	HE MATE	ERIAL SUPP	LIER AND	OUR TEST	ING LABO	ORATORY.	
Maker's ISO#	00109Q167	/22R3M/33	02 7 W	11.661164万水	(AAH)(655455 - 我們兒住了 1:	1446-345-344		
			7/24	e yoeggeeg fa	STILLING CO.			
				1	Win dir	·		
			(SIGNATU	RE NOIO.A	HAB MG	R.)		

(NAME OF MANUFACTURER)

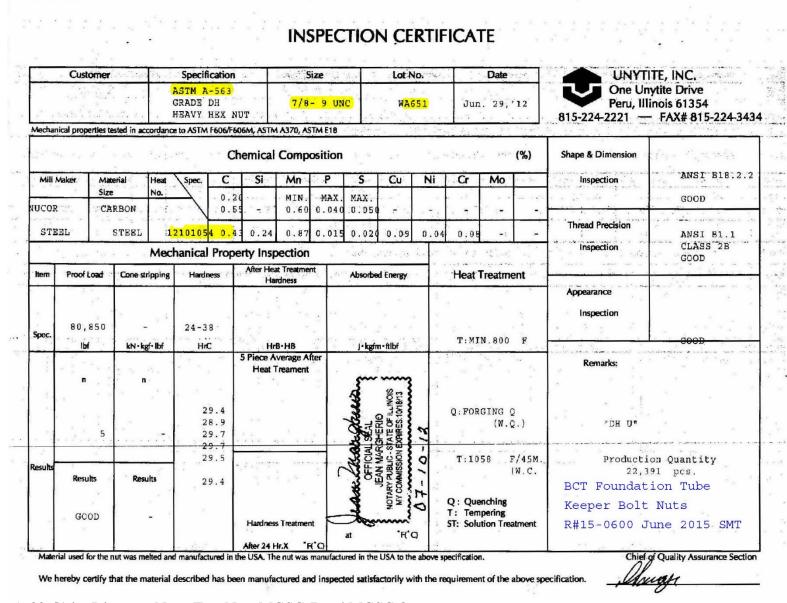


Figure A-30. 7/8-in. Diameter Nuts, Test Nos. MGSC-7 and MGSC-8

LINCOLN OFFICE 825 "M" Street Suite 100 Lincoln, NE 68508 Phone: (402) 479-2200 Fax: (402) 479-2276

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Client Name: Midwest Roadside Safety Facility Project Name: Omitted Post Placement Location: Curb A and Curb B

21-Jul-17

Date

Mix Designatio	on:							Require	ed Streng	jth:					
							Laboratory	Test Data	1						
Laboratory Identification	Field Identification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Cored in Laboratory	Age of Test, Days	Length of Specimen, in.	Diameter of Specimen, in.	Cross-Sectional Area, sq.in.	Maximum Load, Ibf	Compressive Strength, psi.	Required Strength, psi.	Type of Fracture	ASTM Practice for Capping Specimen
MPP- 1	Α	7/7/2017	7/21/2017	7/21/2017	14	0	14	12	6.01	28.37	165,056	5,820		2	C 1231
MPP- 2	в	7/7/2017	7/21/2017	7/21/2017	14	0	14	12	6 01	28 37	170 033	5 990		2	C 1231

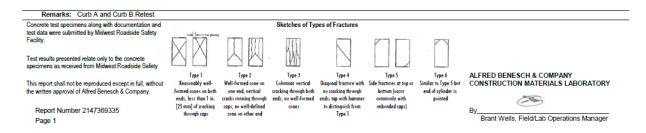


Figure A-31. Curb Concrete Strength, Test Nos. MGSC-7 and MGSC-8

NUCOR NUCOR CORPORATION NUCOR STEEL TEXAS

Sold To:

Mill Certification 8/2/2016

MTR #: J1-347424 8812 Hwy 79 W Jewett, TX 75846 (903) 626-4461 Fax: (903) 626-6290

ADELPHIA METALS I LLC 1930 E MARLTON PIKE M-66 CHERRY HILL, NJ 08003 (856) 988-8889 Fax: (856) 988-8090

Ship To: ADELPHIA METALS-CUST PU N/A JEWETT, TX 75846 (856) 988-8889 Fax: (856) 988-8163

Customer P.O.	818359	Sales Order	236478.5
Product Group	Rebar	Part Number	900000132404200
Grade	ASTM A615/A615M-14 GR 60[420] AASHTO M31-07	Lot #	JW1610471901
Size	13/#4 Rebar	Heat #	JW16104719
Product	13/#4 Rebar 20' A615M GR420 (Gr60)	B.L. Number	J1-745944
Description	A615M GR 420 (Gr60)	Load Number	J1-347424
Customer Spec		Customer Part #	

Roll Date: 6/22/2016 Melt Date: 6/18/2016 Qty Shipped LBS: 48,096 Qty Shipped Pcs: 3,600

C	Mn	P	S	Si	Cu	Ni	Cr	Mo	V	Cb
0.38%	0.98%	0.011%	0.021%	0.19%	0.30%	0.15%	0.16%	0.042%	0.0032%	0.000%
Yield 1: 63,9 Bend OK	00psi			Tensile	1: 101,000ps	i		Ek	ongation: 15%	in 8"(% in 203.3mm)

Specification Comments:

Comments: E-mail: websales@nstexas.com

All manufacturing processes of the steel, including melting, casting & hot rolling, have been performed in U.S.A
 Mercury in any form has not been used in the production or testing of this product.
 Welding or weld repair was not performed on this material.
 This material conforms to the specifications described on this document and may not be reproduced, except in full, without written approval of Nucor Corporation.
 Results reported for ASTM E45 (Inclusion content) and ASTM E381 (Macro-etch) are provided as interpretation of ASTM procedures.

Bgla R Vartari

Bhargava R Vantari **Division Metallurgist**

Page 1 of 1

NBMG-10 January 1, 2012

Figure A-32. 819-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8

G9 GERDAU	CUSTOMER SHIP TO NEBCO INC STEEL DIVISION	CERTIFIED MATERI CUSTOMER BILL TO CONCRETE INDU) STRIES INC	GRADE 60 (420)		PE / SIZE r / #4 (13MM)		Page 1/1 DOCUMENT 0000000000
S-ML-MIDLOTHIAN 10 WARD ROAD	HAVELOCK,NE 68529 USA	LINCOLN,NE 6853 USA		LENGTH 60'00"		WEIGHT 46,534 LB		7/BATCH 8856/02
IDLOTHIAN, TX 76065 Sa	SALES ORDER 4777299/000010	CUSTOMER M	ATERIAL N°	SPECIFICATION / DAT. ASTM A615/A615M-15 E1	E or REVISI	ON		
CUSTOMER PURCHASE ORDER NUMBER 23808	BILL OF LAE 1327-0000226		E //2017					
CHEMICAL COMPOSITION 5 Mn P 0.46 0.91 0.016	\$ \$i 0.031 0.26	Си Ni 0.31 0.12	Çr M 0.20 0.0	lo Sn 126 0.006	V % 0.004	Nb % 0.000	A1 % 0.003	
CHEMICAL COMPOSITION CEqyA706 0.65								
MECHANICAL PROPERTIES PSI M 69462 4	S UT Pa PS 79 110	S I 40	UTS MPa 759	G/L Inch 8.000	0 1 20	G/L. nm 00.0		
2/0	iTest K							
OMMENTS / NOTES								
				8				
The above figures are cor specified requirements. T Mackk	ified chemical and physical test re his material, including the billets, BHASKAR YALAMANCH	was melted and manufactured i	anent records of company. W n the USA. CMTR complies	/c certify that these data are with EN 10204 3.1.		n compliance with		

Figure A-33. 16-in. Long Rebar, Test Nos. MGSC-7 and MGSC-8

Appendix B. Vehicle Center of Gravity Determination

		_ Test Name:	MGSC-7	VIN:			U460931
Year:	2009	Make:	Hyundai	Model:		Accent	
Vahiala O	0.0.4						
venicle C	G Determiı	hation			Weight		
	VEHICLE	Equipment			(lb)		
	+	Unbalasted C	ar (Curb)		2448		
	+	Hub			19		
	+	Brake activati	ion cylinder &	frame	7		
	+	Pneumatic ta			22		
	+	Strobe/Brake			5		
	+	Brake Reciev			6		
	+	CG Plate incl	uding DAS		13		
	=	Battery			-32		
	-	Oil			-10		
	-	Interior			-57		
	-	Fuel			-7		
	2	Coolant			-5		
	-	Washer fluid			-2		
	+	Water Ballast	(In Fuel Tan	k)	0		
	+	Onboard Batt	ery		12		
	Note: (+) is add	ded equipment to v Esti	rehicle, (-) is rem imated Total V			e	
Vehicle Dim	iensions fo	Esti r C.G. Calcula	mated Total ^v	Weight (lb)	2419		_
Vehicle Dim Roof Height:	nensions fo 57 1/4	Esti <u>r C.G. Calcula</u> _ ^{in.}	imated Total tions Front Tr	Weight (lb) rack Width:	2419 57 1/2	in.	_
Vehicle Dim	iensions fo	Esti r C.G. Calcula	imated Total tions Front Tr	Weight (lb)	2419 57 1/2		-
Vehicle Dim Roof Height: Vheel Base:	nensions fo 57 1/4 98 1/4	Esti <u>r C.G. Calcula</u> _ in. _ in.	imated Total V tions Front Tr Rear Tr	Weight (lb) ack Width: ack Width:	2419 57 1/2 57 1/2	in. in.	Difforence
Vehicle Dim Roof Height: Vheel Base: Center of G	nensions fo 57 1/4 98 1/4 ravity	Esti <u>r C.G. Calcula</u> in. in. 1100C MAS	imated Total tions Front Tr Rear Tr 6H Targets	Weight (lb) ack Width: ack Width:	2419 57 1/2 57 1/2 Fest Inertia	in. in.	
Vehicle Dim Roof Height: Vheel Base: Center of G Test Inertial	nensions fo 57 1/4 98 1/4 ravity Weight (Ib)	Esti in. in. 1100C MAS 2420	imated Total tions Front Tr Rear Tr 6H Targets ± 55	Weight (lb) ack Width: ack Width:	2419 57 1/2 57 1/2 Fest Inertia 2423	in. in.	
Vehicle Dim Roof Height: Vheel Base: Center of G Test Inertial Longitudinal	nensions fo 57 1/4 98 1/4 ravity Weight (Ib) CG (in.)	Esti - in. - in. - in. - 1100C MAS 2420 - 39	imated Total tions Front Tr Rear Tr 6H Targets ± 55	Weight (lb) ack Width: ack Width:	2419 57 1/2 57 1/2 Fest Inertia 2423 36.29127	in. in.	-2.708728
Vehicle Dim Roof Height: Wheel Base: Center of G Test Inertial Longitudinal Lateral CG	ravity CG (in.) (in.)	Esti in. in. 1100C MAS 2420 39 NA	imated Total tions Front Tr Rear Tr 6H Targets ± 55	Weight (lb) ack Width: ack Width:	2419 57 1/2 57 1/2 Fest Inertia 2423 36.29127 0.083058	in. in.	
Vehicle Dim Roof Height: Vheel Base: Center of G Test Inertial Longitudinal Lateral CG Vertical CG	nensions fo 57 1/4 98 1/4 ravity Weight (Ib) CG (in.) (in.) (in.)	Esti in. in. 1100C MAS 2420 39 NA NA	tions Front Tr Rear Tr BH Targets ± 55 ± 4	Weight (lb) ack Width: ack Width:	2419 57 1/2 57 1/2 Fest Inertia 2423 36.29127	in. in.	-2.708728 N
Vehicle Dim Roof Height: Vheel Base: Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC	ravity Weight (lb) CG (in.) (in.) 3 is measured f	Esti in. in. 1100C MAS 2420 39 NA	tions Front Tr Rear Tr SH Targets ± 55 ± 4	Weight (lb) rack Width: rack Width:	2419 57 1/2 57 1/2 Fest Inertia 2423 36.29127 0.083058 22.79608	in. in.	-2.708728 N
Vehicle Dim Roof Height: Vheel Base: Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC Note: Lateral C	ravity Weight (Ib) CG (in.) (in.) G measured fr	Esti in. in. 1100C MAS 2420 39 NA NA NA	tions Front Tr Rear Tr SH Targets ± 55 ± 4	Weight (lb) rack Width: rack Width:	2419 57 1/2 57 1/2 Fest Inertia 2423 36.29127 0.083058 22.79608 er) side	in. in.	-2.708728 Na Na
Vehicle Dim Roof Height: Vheel Base: Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC	ravity Weight (Ib) CG (in.) (in.) G measured fr	Esti in. in. 1100C MAS 2420 39 NA NA NA	tions Front Tr Rear Tr SH Targets ± 55 ± 4	Weight (lb) rack Width: rack Width:	2419 57 1/2 57 1/2 Fest Inertia 2423 36.29127 0.083058 22.79608	in. in.	-2.708728 Na Na
Vehicle Dim Roof Height: Wheel Base: Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC Note: Lateral C CURB WEIC	ravity Weight (Ib) CG (in.) (in.) G measured fr GHT (Ib) Left	Esti in. in. 1100C MAS 2420 39 NA NA from front axle of te om centerline - pos	tions Front Tr Rear Tr SH Targets ± 55 ± 4	Weight (lb) rack Width: rack Width:	2419 57 1/2 57 1/2 Fest Inertia 2423 36.29127 0.083058 22.79608 er) side TEST INER	in. in. I RTIAL WEI	-2.708728 N N GHT (Ib) Right
Vehicle Dim Roof Height: Wheel Base: Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC Note: Lateral C CURB WEIC Front	ravity Weight (Ib) CG (in.) (in.) G measured fr GHT (Ib) Left 786	Esti in. in. 1100C MAS 2420 39 NA NA from front axle of te om centerline - pos	tions Front Tr Rear Tr SH Targets ± 55 ± 4	Weight (lb) rack Width: rack Width:	2419 57 1/2 57 1/2 Fest Inertia 2423 36.29127 0.083058 22.79608 er) side TEST INER Front	in. in. I RTIAL WEI Left 743	-2.708728 N. N. BGHT (Ib) Right 785
Vehicle Dim Roof Height: Wheel Base: Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC Note: Lateral C CURB WEIC	ravity Weight (Ib) CG (in.) (in.) G measured fr GHT (Ib) Left	Esti in. in. 1100C MAS 2420 39 NA NA from front axle of te om centerline - pos	tions Front Tr Rear Tr SH Targets ± 55 ± 4	Weight (lb) rack Width: rack Width:	2419 57 1/2 57 1/2 Fest Inertia 2423 36.29127 0.083058 22.79608 er) side TEST INER	in. in. I RTIAL WEI	-2.708728 N N GHT (Ib) Right
Vehicle Dim Roof Height: Wheel Base: Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC Note: Lateral C CURB WEIC Front	ravity Weight (Ib) CG (in.) (in.) G measured fr GHT (Ib) Left 786	Esti in. in. 1100C MAS 2420 39 NA NA from front axle of te om centerline - pos	tions Front Tr Rear Tr SH Targets ± 55 ± 4	Weight (lb) rack Width: rack Width:	2419 57 1/2 57 1/2 Fest Inertia 2423 36.29127 0.083058 22.79608 er) side TEST INER Front	in. in. I RTIAL WEI Left 743	-2.708728 N. N. BGHT (Ib) Right 785
Vehicle Dim Roof Height: Wheel Base: Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC Note: Lateral C CURB WEIC Front Rear	ravity Weight (Ib) CG (in.) (in.) (in.) G measured fr GHT (Ib) Left 786 459	Esti r C.G. Calcular in. 1100C MAS 2420 39 NA NA from front axle of te om centerline - pos Right 781 422	tions Front Tr Rear Tr SH Targets ± 55 ± 4	Weight (lb) rack Width: rack Width:	2419 57 1/2 57 1/2 7est Inertial 2423 36.29127 0.083058 22.79608 er) side TEST INEF Front Rear	in. in. I Left 743 465	-2.708728 N. N BGHT (Ib) Right 785 430

Figure B-1. Vehicle Mass Distribution, Test No. MGSC-7

Date Year		Test Name: Make:	MGSC-8 Dodge	VIN: Model:	1D7F	Ram 1500	
real	r. <u>2010</u>	Make.	Douge	- Wodel.		Ram 1500	
Vehicle CG	Determination	1		\A/oight	Vartical CC	Vortical M	
	Fauinment			-		Vertical M	
VEHICLE	Equipment			(lb) 5092	(in.) 28 1/3	(lb-in.) 144167.25	1
+ +	Unballasted 1 Hub			19	14 3/4	280.25	
+		ion cylinder & f	frame	7	24 1/2	171.5	
+		-	liame	27	25 1/2	688.5	
+	Pneumatic ta Strobe/Brake			5	23 1/2	123.75	-
+	Brake Receiv			5	51 3/4	258.75	-
+	CG Plate incl			42	29 1/4	1228.5	-
	Battery			-45	43	-1935	
	Oil			-45	26 1/2	-238.5	3
	Interior			-9	35 1/2	-3017.5	-
-	Fuel			-05	19 1/2	-3159	-
-	Coolant			-102	33 1/2	-67	-
-	Washer fluid			-2 -7	33 1/2	-07	-
+		t (In Fuel Tank)	1	89	16 1/2	1468.5	
+		plemental Batt		12	25	300	
200 - 20u		piementai bati	lory	12	20	0	-
						U U	
Note: (+) is add	led equipment to ve E	hicle, (-) is remove Estimated Tota Vertical CG L	I Weight (Ib)	4988		140039	
Vehicle Dim	E nensions for C.	Estimated Tota Vertical CG L . G. Calculatio	Il Weight (Ib) ₋ocation (in.) ns	4988 28.0752	67	140039]
Vehicle Dim	E	Estimated Tota Vertical CG L . G. Calculatio	Il Weight (Ib) ₋ocation (in.) ns Front Tr	4988 28.0752 ack Width:	67 67 5/8		-
Vehicle Dim	E nensions for C.	Estimated Tota Vertical CG L . G. Calculatio	Il Weight (Ib) ₋ocation (in.) ns Front Tr	4988 28.0752	1947/25	140039	-
Vehicle Dim Wheel Base	ensions for C. e: <u>140 1/2</u> ii	Estimated Tota Vertical CG L . G. Calculatio n n.	Il Weight (Ib) ₋ocation (in.) ns Front Tr Rear Tr	4988 28.0752 ack Width: ack Width:	67 5/8	140039 in. in.	-
Vehicle Dim Wheel Base Center of G	Enensions for C. e: <u>140 1/2</u> in Fravity	Estimated Tota Vertical CG L .G. Calculation n. 2270P MASI	ll Weight (Ib) Location (in.) ns Front Tr Rear Tr H Targets	4988 28.0752 ack Width: ack Width:	67 5/8 Test Inertia	140039 in. in.	- Differenc
Vehicle Dim Wheel Base Center of G Test Inertial	E mensions for C. e: <u>140 1/2</u> in ravity Weight (Ib)	Estimated Tota Vertical CG L .G. Calculation n. 2270P MASI 5000 ±	Il Weight (Ib) Location (in.) ns Front Tr Rear Tr H Targets 110	4988 28.0752 ack Width: ack Width:	67 5/8 Test Inertia 5000	140039 in. in.	- Differenc
Vehicle Dim Wheel Base Center of G Test Inertial Longitudinal	E mensions for C. e: <u>140 1/2</u> in ravity Weight (lb) CG (in.)	Estimated Tota Vertical CG L .G. Calculation n. 2270P MASI 5000 ± 63 ±	Il Weight (Ib) Location (in.) ns Front Tr Rear Tr H Targets 110	4988 28.0752 ack Width: ack Width:	67 5/8 Test Inertia 5000 60.0216	140039 in. in. 	- Differenc 0. -2.9784
Vehicle Dim Wheel Base Center of G Test Inertial Longitudinal Lateral CG	e: <u>140 1/2</u> in ravity Weight (lb) CG (in.) (in.)	Estimated Tota Vertical CG L .G. Calculation n. 2270P MASI 5000 ± 63 ± NA	Il Weight (Ib) Location (in.) ns Front Tr Rear Tr H Targets 110 4	4988 28.0752 ack Width: ack Width:	67 5/8 Test Inertia 5000 60.0216 0.3634875	140039 in. in. 	- Differenc 0. -2.9784 N
Vehicle Dim Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG	E mensions for C. a: 140 1/2 in aravity Weight (Ib) CG (in.) (in.) (in.)	Estimated Tota Vertical CG L .G. Calculation n. 2270P MASI 5000 ± 63 ± NA 28 o	Il Weight (Ib) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater	4988 28.0752 ack Width: ack Width:	67 5/8 Test Inertia 5000 60.0216	140039 in. in. 	- Differenc 0. -2.9784 N
Vehicle Dim Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CO	e: <u>140 1/2</u> ii aravity Weight (Ib) CG (in.) (in.) G is measured from	Estimated Tota Vertical CG L .G. Calculation n. 2270P MASI 5000 ± 63 ± NA 28 o front axle of test v	Il Weight (Ib) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater vehicle	4988 28.0752 ack Width: ack Width:	67 5/8 Test Inertia 5000 60.0216 0.3634875 28.08	140039 in. in. 	- Differenc 0. -2.9784 N
Vehicle Dim Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CO	E mensions for C. a: 140 1/2 in aravity Weight (Ib) CG (in.) (in.) (in.)	Estimated Tota Vertical CG L .G. Calculation n. 2270P MASI 5000 ± 63 ± NA 28 o front axle of test v	Il Weight (Ib) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater vehicle	4988 28.0752 ack Width: ack Width:	67 5/8 Test Inertia 5000 60.0216 0.3634875 28.08	140039 in. in. 	- Differenc 0. -2.9784 N
Vehicle Dim Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CO	e: 140 1/2 ii aravity Weight (Ib) CG (in.) (in.) (in.) G measured from of	Estimated Tota Vertical CG L .G. Calculation n. 2270P MASI 5000 ± 63 ± NA 28 o front axle of test v	Il Weight (Ib) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater vehicle	4988 28.0752 ack Width: ack Width:	67 5/8 Test Inertia 5000 60.0216 0.3634875 28.08 side	140039 in. in. 	Differenc 0. -2.9784 N. 0.0751
Vehicle Dim Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CG Note: Lateral C	E mensions for C. e: 140 1/2 ii ravity Weight (lb) CG (in.) (in.) (in.) G measured from of CG measured from of CG (ID)	Estimated Tota Vertical CG L .G. Calculation n. 2270P MASI 5000 ± 63 ± NA 28 o front axle of test v centerline - positive	Il Weight (Ib) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater vehicle	4988 28.0752 ack Width: ack Width:	67 5/8 Test Inertia 5000 60.0216 0.3634875 28.08 side	in. in. I	- Differenc 0. -2.9784 N 0.0751 HT (Ib)
Vehicle Dim Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CG Note: Lateral C CURB WEIC	E mensions for C. e: 140 1/2 if weight (lb) CG (in.) (in.) (in.) G measured from of GHT (lb) Left	Estimated Tota Vertical CG L .G. Calculation n. 2270P MASI 5000 ± 63 ± NA 28 o front axle of test v centerline - positive Right	Il Weight (Ib) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater vehicle	4988 28.0752 ack Width: ack Width:	67 5/8 Test Inertia 5000 60.0216 0.3634875 28.08 side TEST INER	in. in. I RTIAL WEIG	- Differenc 0. -2.9784 N 0.0751 HT (Ib) Right
Vehicle Dim Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CG Note: Lateral C CURB WEIC Front	E Travity Weight (lb) CG (in.) (in.) G is measured from c GHT (lb) Left 1510	Estimated Tota Vertical CG L .G. Calculation n. 2270P MASI 5000 ± 63 ± NA 28 o front axle of test v centerline - positive Right 1413	Il Weight (Ib) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater vehicle	4988 28.0752 ack Width: ack Width:	67 5/8 Test Inertia 5000 60.0216 0.3634875 28.08 side TEST INER Front	140039	- Differenc 0. -2.9784 N 0.0751 HT (Ib) HT (Ib) Right 1444
Vehicle Dim Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CG Note: Lateral C CURB WEIC	E mensions for C. e: 140 1/2 if weight (lb) CG (in.) (in.) (in.) G measured from of GHT (lb) Left	Estimated Tota Vertical CG L .G. Calculation n. 2270P MASI 5000 ± 63 ± NA 28 o front axle of test v centerline - positive Right	Il Weight (Ib) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater vehicle	4988 28.0752 ack Width: ack Width:	67 5/8 Test Inertia 5000 60.0216 0.3634875 28.08 side TEST INER	in. in. I RTIAL WEIG	- Differenc 0. -2.9784 N 0.0751 HT (Ib) Right
Vehicle Dim Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Lateral C Note: Lateral C CURB WEIC Front Rear	E Travity Veight (lb) CG (in.) (in.) G measured from GHT (lb) Left 1510 1065	Estimated Tota Vertical CG L .G. Calculation n. 2270P MASI 5000 ± 63 ± NA 28 o front axle of test v centerline - positive Right 1413 1104	Il Weight (Ib) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater vehicle	4988 28.0752 ack Width: ack Width:	67 5/8 Test Inertia 5000 60.0216 0.3634875 28.08 side TEST INER Front Rear	in. in. in. II Left 1420 1053	- - - - - - - - - - - - - -
Vehicle Dim Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Lateral C CURB WEIC Front Rear FRONT	E Travity Weight (Ib) CG (in.) (in.) G measured from GHT (Ib) Left 1510 1065 2923	Estimated Tota Vertical CG L .G. Calculation n. 2270P MASI 5000 ± 63 ± NA 28 o front axle of test v centerline - positive Right 1413 1104 b	Il Weight (Ib) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater vehicle	4988 28.0752 ack Width: ack Width:	67 5/8 Test Inertia 5000 60.0216 0.3634875 28.08 side TEST INER Front Rear FRONT	in. in. in. I Left 1420 1053 2864	- - - - - - 2.9784 N 0.0751 - HT (Ib) Right 1444 1083 Ib
Vehicle Dim Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Lateral C Note: Lateral C CURB WEIC Front Rear	Imposition Imposit	Estimated Tota Vertical CG L .G. Calculation n. 2270P MASI 5000 ± 63 ± NA 28 o front axle of test v centerline - positive Right 1413 1104	Il Weight (Ib) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater vehicle	4988 28.0752 ack Width: ack Width:	67 5/8 Test Inertia 5000 60.0216 0.3634875 28.08 side TEST INER Front Rear	in. in. in. II Left 1420 1053	- - - - - - - - - - - - - -

Figure B-2. Vehicle Mass Distribution, Test No. MGSC-8

Appendix C. Static Soil Tests

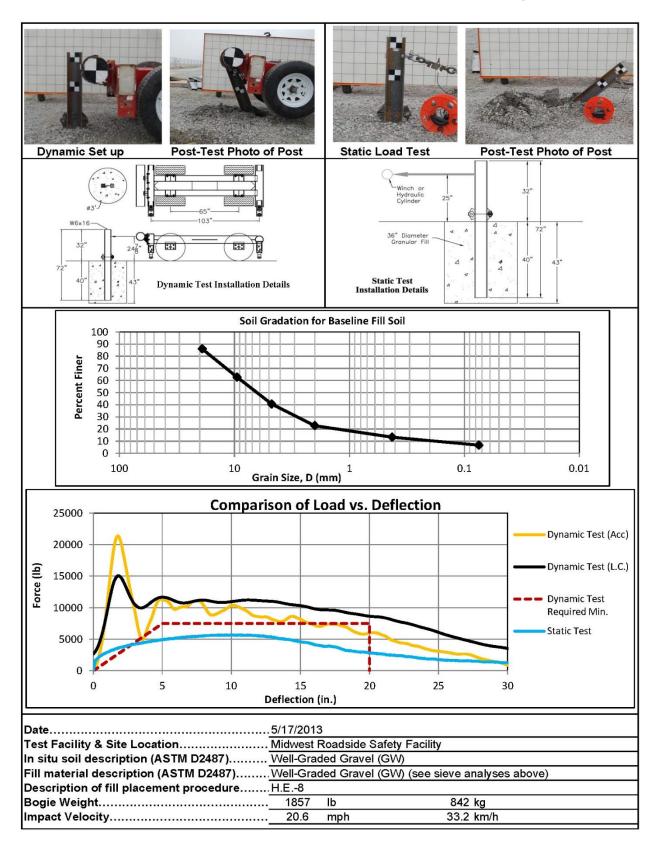


Figure C-1. Soil Strength, Initial Calibration Tests

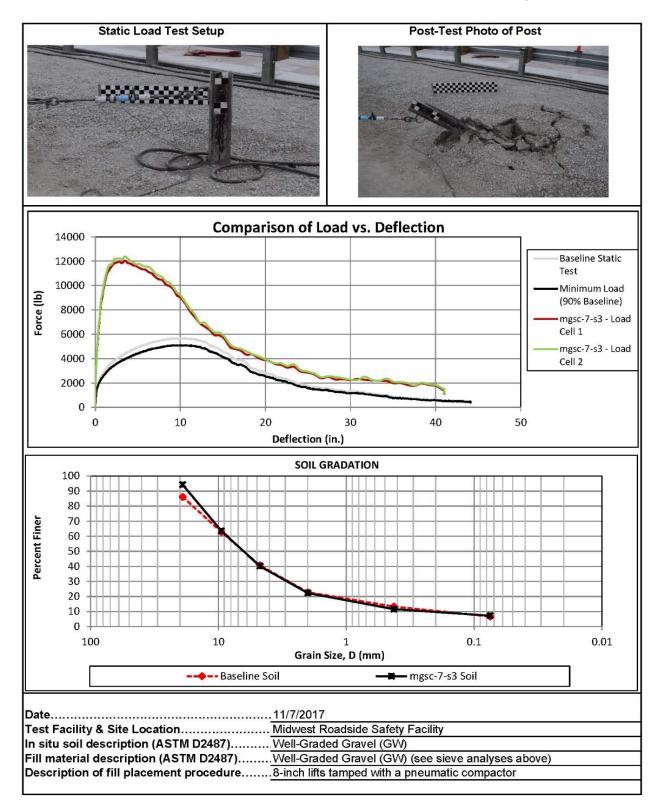


Figure C-2. Static Soil Test, Test No. MGSC-7

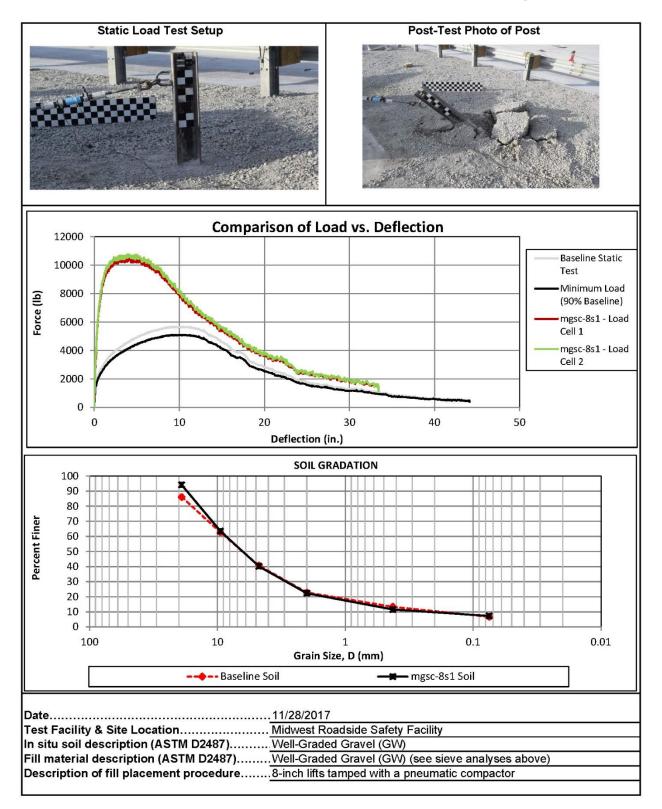


Figure C-3. Static Soil Test, Test No. MGSC-8

Appendix D. Vehicle Deformation Records

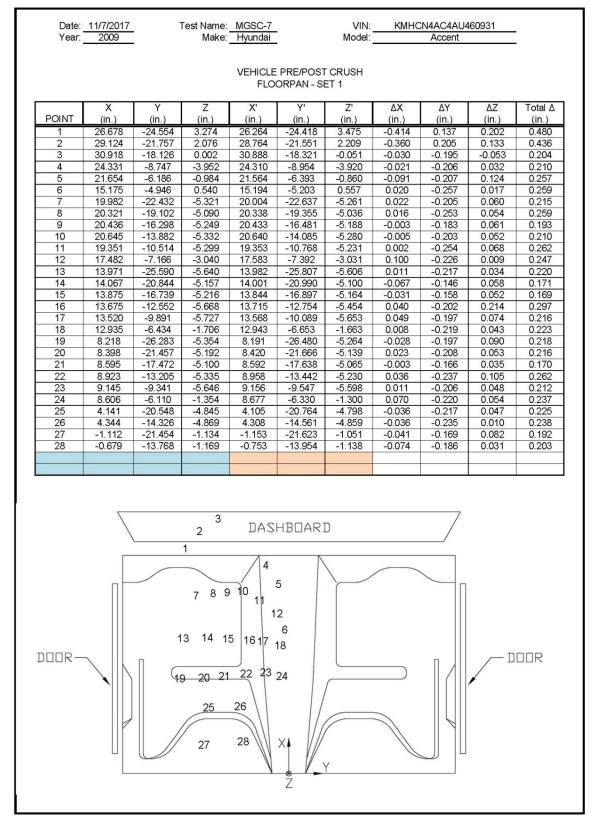


Figure D-1. Floor Pan Deformation Data - Set 1, Test No. MGSC-7

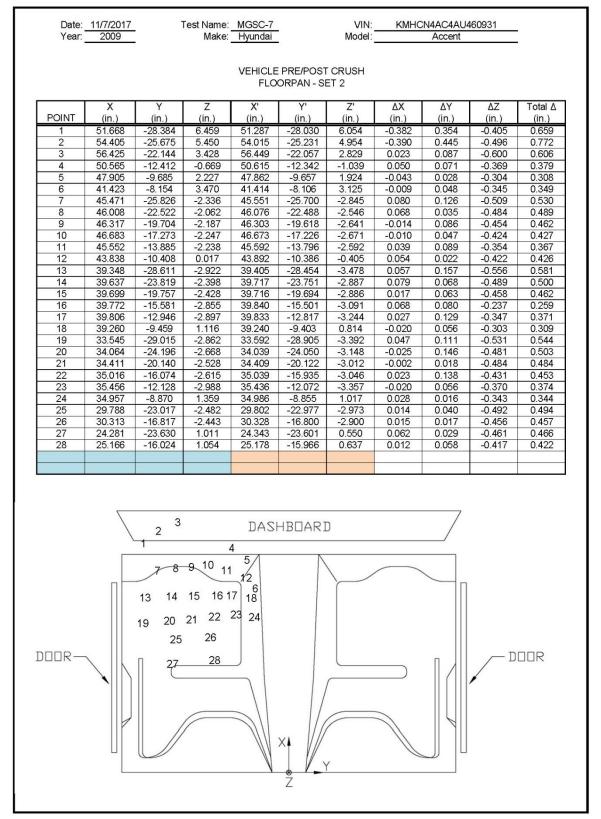


Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSC-7

X Y POINT (in.) (in.) 1 13.191 -26.4 2 11.227 -16.0 3 15.383 -7.6 4 13.427 -20.0 5 9.356 -2.2 6 10.981 -1.6 9 20.084 -29.3 9 20.084 -29.3 11 -3.424 -29.3 11 -3.424 -29.3 11 -3.424 -29.3 11 -3.424 -29.3 113 2.845 -30.0 114 -3.324 -29.3 115 -12.082 -29.3 115 -12.082 -29.3 118 1.730 -10.3 19 2.195 -60.0 20 2.466 -17.7 21 -5.355 -19.3 22 -4.704 -15.8 23 -4.039 -10.5								
POINT (in.) (in.) 1 13.191 -26.4 2 11.227 -16.0 3 15.383 -7.6 4 13.427 -2.0 5 9.356 -2.2 6 10.981 -1.6 9 20.084 -29.3 9 20.084 -29.3 11 -3.424 -29.3 12 8.894 -29.3 13 2.845 -30.0 14 -3.324 -29.3 15 -12.082 -29.3 15 -12.082 -29.3 15 -12.082 -29.3 15 -12.082 -29.3 16 0.001 -21.1 17 0.971 -16.2 20 2.466 -1.7 21 -5.355 -19.3 22 -4.704 -15.3 23 -4.039 -10.6 24 -3.868 -5.9		IICLE PRE/ FERIOR CR						
Image 2 11.227 -16.0 3 15.383 -7.6 4 13.427 -2.0 5 9.356 -2.2 6 10.981 -1.6 9 20.084 -29.3 9 20.084 -29.3 11 -3.424 -29.3 12 8.894 -29.3 13 2.845 -30.0 14 -3.324 -29.3 15 -12.082 -29.3 16 0.001 -21.7 17 0.971 -16.2 18 1.730 -10.4 19 2.195 -6.0 20 2.466 -1.7 21 -5.355 -19.3 22 -4.704 -15.3 22 -4.704 -16.4 23 -4.039 -10.6 24 -3.808 -55.9 30 -7.655 -5.8 30 -7.655 <td< th=""><th>1 an an</th><th>X' (in.)</th><th>Y' (in.)</th><th>Z' (in.)</th><th>ΔX (in.)</th><th>ΔY (in.)</th><th>ΔΖ (in.)</th><th>Total ∆ (in.)</th></td<>	1 an	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔΖ (in.)	Total ∆ (in.)
Home 3 15.383 -7.6 4 13.427 -2.0 5 9.356 -2.2 6 10.981 -1.6 9 20.084 -29.3 9 20.084 -29.3 10 -13.756 -22.3 11 -3.424 -29.3 12 8.894 -29.3 12 8.894 -29.3 13 2.845 -30.0 14 -3.324 -29.3 15 -12.082 -29.3 15 -12.082 -29.3 16 0.001 -21.7 17 0.971 -16.3 20 2.466 -1.7 21 -5.355 -19.3 22 -4.704 -15.3 23 -4.039 -10.6 24 -3.808 -55.9 25 -3.967 -1.6 26 -8.668 -18.3 27 -8.493	452 22.489	13.569	-26.523	22.644	0.378	-0.071	0.155	0.415
5 9.366 -2.2 6 10.981 -1.6 M H G M M G M M M M M M M M M M M M M M M M		11.633	-16.067	26.388	0.406	0.002	0.107	0.420
5 9.366 -2.2 6 10.981 -1.6 M H G M M G M M M M M M M M M M M M M M M M	22	15.763	-7.641	23.547	0.380	-0.032	0.080	0.389
6 10.981 -1.6 III 7 17.163 -29.3 9 20.084 -29.3 9 20.084 -29.3 10 -13.756 -28.3 11 -3.424 -29.3 12 8.894 -29.3 12 8.894 -29.3 13 2.845 -30.0 14 -3.324 -29.3 15 -12.082 -29.3 15 -12.082 -29.3 15 -12.082 -29.3 16 0.001 -21.7 17 0.971 -16.3 18 1.730 -10.7 20 2.466 -1.7 21 -5.555 -19.1 22 -4.704 -15.9 23 -4.039 -10.6 24 -3.808 -5.9 25 -3.967 -1.6 28 -7.906 -10.6 29 -7.565		13.950	-2.001	23.674	0.523	0.010	0.057	0.527
III 7 17.163 -29.3 8 16.577 -29.3 9 20.084 -29.3 10 -13.756 -28.3 11 -3.424 -29.3 12 8.894 -29.3 13 2.845 -30.0 14 -3.324 -29.3 15 -12.082 -29.3 15 -12.082 -29.3 15 -12.082 -29.3 15 -12.082 -29.3 16 0.001 -21.7 17 0.971 -16.3 18 1.730 -10.1 19 2.195 -6.0 20 2.466 -1.7 21 -5.555 -19.3 22 -4.704 -15.4 23 -4.039 -10.6 24 -3.808 -5.9 25 -3.967 -1.6 28 -7.906 -10.6 29 -7.565	24 STRAN. 204 7 CONTRACT/2020	9.741	-2.255	17.330	0.385	-0.043	0.100	0.400
B 16.577 -29.3 9 20.084 -29.3 10 -13.756 -28.3 11 -3.424 -29.3 12 8.894 -29.3 13 2.845 -30.0 14 -3.324 -29.3 15 -12.082 -29.3 15 -12.082 -29.3 15 -12.082 -29.3 15 -12.082 -29.3 16 0.001 -21.7 17 0.971 -16.3 18 1.730 -10.1 19 2.195 -6.0 20 2.466 -1.7 21 -5.355 -19.3 22 -4.704 -15.3 23 -4.039 -10.6 26 -8.668 -18.3 27 -8.493 -15.4 28 -7.906 -10.6 29 -7.565 -5.8 30 -7.043 -15.3 <td></td> <td>11.213</td> <td>-1.808</td> <td>8.622</td> <td>0.232</td> <td>-0.129</td> <td>0.108</td> <td>0.286</td>		11.213	-1.808	8.622	0.232	-0.129	0.108	0.286
■ 10 -13.756 -28.7 11 -3.424 -29.7 12 8.894 -29.7 13 2.845 -30.0 14 -3.324 -29.7 15 -12.082 -29.3 16 0.001 -21.7 18 1.730 -10.7 19 2.195 -6.0 20 2.466 -1.7 21 -5.355 -19.7 22 -4.704 -15.3 23 -4.039 -10.6 24 -3.808 -55.9 25 -3.967 -1.6 26 -8.668 -18.7 29 -7.565 -5.8 30 -7.043 -15.5 31 0.452 -23.3 32 3.837 -24.6 33 8.471 -25.3 34 12.637 -27.0		17.370	-29.295	3.413	0.207	-0.068	0.184	0.285
■ 10 -13.756 -28.7 11 -3.424 -29.7 12 8.894 -29.7 13 2.845 -30.0 14 -3.324 -29.7 15 -12.082 -29.3 16 0.001 -21.7 18 1.730 -10.7 19 2.195 -6.0 20 2.466 -1.7 21 -5.355 -19.7 22 -4.704 -15.3 23 -4.039 -10.6 24 -3.808 -55.9 25 -3.967 -1.6 26 -8.668 -18.7 29 -7.565 -5.8 30 -7.043 -15.5 31 0.452 -23.3 32 3.837 -24.6 33 8.471 -25.3 34 12.637 -27.0		16.729	-29.217	1.031	0.152	-0.012	0.101	0.183
Inf 0.001 -21.7 17 0.971 -16.2 18 1.730 -10.7 19 2.195 -6.0 20 2.466 -1.7 21 -5.355 -19.7 22 -4.704 -15.8 23 -4.039 -10.6 24 -3.808 -5.9 25 -3.967 -1.6 26 -8.668 -18.7 29 -7.565 -5.8 30 -7.043 -15.4 23 -3.967 -1.6 28 -7.906 -10.6 29 -7.565 -5.8 30 -7.043 -1.5 31 0.452 -23.9 32 3.837 -24.6 33 8.471 -25.3 34 12.637 -27.0 35 -18.322 -27.5		20.161	-29.056	0.725	0.077	0.153	0.140	0.221
Inf 0.001 -21.7 17 0.971 -16.2 18 1.730 -10.7 19 2.195 -6.0 20 2.466 -1.7 21 -5.355 -19.7 22 -4.704 -15.8 23 -4.039 -10.6 24 -3.808 -5.9 25 -3.967 -1.6 26 -8.668 -18.7 29 -7.565 -5.8 30 -7.043 -15.4 23 -3.967 -1.6 28 -7.906 -10.6 29 -7.565 -5.8 30 -7.043 -1.5 31 0.452 -23.9 32 3.837 -24.6 33 8.471 -25.3 34 12.637 -27.0 35 -18.322 -27.5		-13.488	-29.458	23.832	0.267	-0.704	0.270	0.800
Inf 0.001 -21.' 17 0.971 -16.' 18 1.730 -10.' 19 2.195 -6.0 20 2.466 -1.7 21 -5.355 -19.' 22 -4.704 -15.s 23 -4.039 -10.' 24 -3.808 -5.9 25 -3.967 -1.6 26 -8.668 -18.' 27 -8.493 -15.4 28 -7.906 -10.0 29 -7.565 -5.8 30 -7.043 -1.5 31 0.452 -23.9 32 3.837 -24.6 33 8.471 -25.5 34 12.637 -27.0		-3.165 9.161	-29.629 -29.914	22.819 21.364	0.259 0.267	-0.439 -0.203	0.221 0.101	0.556
Inf 0.001 -21.' 17 0.971 -16.' 18 1.730 -10.' 19 2.195 -6.0 20 2.466 -1.7 21 -5.355 -19.' 22 -4.704 -15.s 23 -4.039 -10.' 24 -3.808 -5.9 25 -3.967 -1.6 26 -8.668 -18.' 27 -8.493 -15.4 28 -7.906 -10.0 29 -7.565 -5.8 30 -7.043 -1.5 31 0.452 -23.9 32 3.837 -24.6 33 8.471 -25.5 34 12.637 -27.0		3.037	-29.914	10.635	0.267	-0.203	0.101	0.350
Inf 0.001 -21.7 17 0.971 -16.2 18 1.730 -10.7 19 2.195 -6.0 20 2.466 -1.7 21 -5.355 -19.7 22 -4.704 -15.8 23 -4.039 -10.6 24 -3.808 -5.9 25 -3.967 -1.6 26 -8.668 -18.7 29 -7.565 -5.8 30 -7.043 -15.4 23 -3.967 -1.6 28 -7.906 -10.6 29 -7.565 -5.8 30 -7.043 -1.5 31 0.452 -23.9 32 3.837 -24.6 33 8.471 -25.3 34 12.637 -27.0 35 -18.322 -27.5		-3.131	-30.041	12.286	0.192	-0.669	0.152	0.070
Inf 0.001 -21.' 17 0.971 -16.' 18 1.730 -10.' 19 2.195 -6.0 20 2.466 -1.7 21 -5.355 -19.' 22 -4.704 -15.s 23 -4.039 -10.' 24 -3.808 -5.9 25 -3.967 -1.6 26 -8.668 -18.' 27 -8.493 -15.4 28 -7.906 -10.0 29 -7.565 -5.8 30 -7.043 -1.5 31 0.452 -23.9 32 3.837 -24.6 33 8.471 -25.5 34 12.637 -27.0	2000/01/01/01/2000/01/00/01/00/01/00/01/00/01/00/01/00/01/00/01/00/01/00/01/00/01/00/01/00/01/00/01/00/01/00/0	-11.854	-30.047	12.200	0.134	-0.524	0.200	0.647
Inf 0.971 -16.2 18 1.730 -10.1 19 2.195 -6.0 20 2.466 -1.7 21 -5.355 -19.1 22 -4.704 -15.3 24 -3.808 -5.9 25 -3.967 -1.6 26 -8.668 -18.2 27 -8.493 -15.4 29 -7.565 -5.8 30 -7.043 -1.5 31 0.452 -23.3 32 3.837 -24.6 33 8.471 -25.3 34 12.637 -27.0		0.522	-21.110	38.755	0.521	0.012	0.126	0.536
18 1.730 -10.7 19 2.195 -6.0 20 2.466 -1.7 21 -5.355 -19.7 22 -4.704 -15.3 23 -4.039 -10.4 24 -3.808 -5.9 25 -3.967 -1.6 26 -8.668 -18.4 27 -8.493 -15.4 28 -7.906 -10.6 29 -7.565 -5.8 30 -7.043 -1.5 31 0.452 -23.3 32 3.837 -24.6 33 8.471 -25.5 34 12.637 -27.0	Constrained and a second second of the	1.487	-16.126	39.041	0.517	0.012	0.099	0.538
L 19 2.195 -6.0 20 2.466 -1.7 21 -5.355 -19.7 22 -4.704 -15.9 23 -4.039 -10.5 24 -3.808 -5.9 25 -3.967 -11.6 26 -8.668 -18.7 29 -7.565 -5.8 30 -7.043 -1.5 31 0.452 -23.3 32 3.837 -24.6 33 8.471 -25.3 34 12.637 -27.0		2.202	-10.720	39.208	0.473	-0.010	0.068	0.478
21 -5.355 -19.7 22 -4.704 -15.8 23 -4.039 -10.8 24 -3.808 -5.9 25 -3.967 -1.6 26 -8.668 -18.2 28 -7.906 -10.6 29 -7.565 -5.8 30 -7.043 -1.5 31 0.452 -23.9 32 3.837 -24.6 33 8.471 -25.9 34 12.637 -27.0 35 -18.322 -77.0		2.658	-6.022	39.239	0.463	0.020	0.044	0.465
L 22 -4.704 -15.5 23 -4.039 -10.3 24 -3.808 -5.9 25 -3.967 -1.6 26 -8.668 -18.2 27 -8.493 -15.4 28 -7.906 -10.6 29 -7.565 -5.8 30 -7.043 -1.5 31 0.452 -23.9 32 3.837 -24.6 33 8.471 -25.5 34 12.637 -27.0 35 -18.322 -77.0		2.949	-1.854	39.180	0.483	-0.057	0.013	0.486
0 23 -4.039 -10.3 24 -3.808 -5.9 25 -3.967 -1.6 26 -8.668 -18.2 27 -8.493 -15.4 28 -7.906 -10.6 29 -7.565 -5.8 30 -7.043 -1.5.4 31 0.452 -23.9 32 3.837 -24.6 33 8.471 -25.5 34 12.637 -27.0 35 -18.322 -27.5	768 41.089	-4.843	-19.744	41.221	0.512	0.024	0.132	0.530
21 3.833 3.67 -1.6 25 -3.967 -1.6 -3.68 -18.2 27 -8.493 -15.4 -3.66 -3.66 -3.66 28 -7.906 -10.6 -29 -7.565 -5.8 -30 -7.043 -1.5 30 -7.043 -1.5 -32 -3.837 -24.6 -33 8.471 -25.5 -34 12.637 -27.0 -35 -18.322 -27.5 -34 12.637 -27.0 -27.0 -35 -18.322 -27.5 -34 12.637 -27.0 -27.0 -35 -18.322 -27.0		-4.169	-15.865	41.456	0.534	0.047	0.105	0.547
21 3.836 3.63 25 -3.967 -1.6 26 -8.668 -18.2 27 -8.493 -15.4 28 -7.906 -10.6 29 -7.565 -5.8 30 -7.043 -1.5 32 3.837 -24.6 33 8.471 -25.5 34 12.637 -27.0 35 -18.322 -27.5	ALTERATION OF A STATE AND A DESCRIPTION OF A	-3.536	-10.491	41.671	0.503	0.067	0.073	0.512
26 -8.668 -18.2 27 -8.493 -15.4 28 -7.906 -10.6 29 -7.565 -5.8 30 -7.043 -1.5 31 0.452 -23.8 32 3.837 -24.6 33 8.471 -25.5 34 12.637 -27.0		-3.281	-5.909	41.792	0.527	0.056	0.046	0.532
27 -8.493 -15.4 28 -7.906 -10.6 29 -7.565 -5.8 30 -7.043 -1.5 31 0.452 -23.8 32 3.837 -24.6 33 8.471 -25.9 34 12.637 -27.0 35 -18.322 -27.0		-3.453	-1.612	41.893	0.514	0.011	0.032	0.515
28 -7.906 -10.6 29 -7.565 -5.8 30 -7.043 -1.5 31 0.452 -23.3 32 3.837 -24.6 33 8.471 -25.9 34 12.637 -27.0 35 -18.322 -27.0		-8.162	-18.139	42.095	0.506	0.082	0.129	0.528
29 -7.565 -5.8 30 -7.043 -1.5 31 0.452 -23.8 32 3.837 -24.6 33 8.471 -25.8 34 12.637 -27.0 35 -18.322 -27.0		-8.039 -7.377	-15.369 -10.546	42.329 42.530	0.455	0.068	0.121 0.084	0.475
30 -7.043 -1.5 31 0.452 -23.9 32 3.837 -24.0 33 8.471 -25.9 34 12.637 -27.0 35 -18.322 -27.0		-7.017	-5.720	42.550	0.529	0.090	0.053	0.559
31 0.452 -23.9 32 3.837 -24.6 33 8.471 -25.3 34 12.637 -27.0 35 -18.322 -27.0	- 28-59/87	-6.537	-1.509	42.585	0.540	0.033	0.033	0.508
32 3.837 -24.6 33 8.471 -25.5 34 12.637 -27.0 35 -18.322 -27.0		0.939	-23.947	36.157	0.487	0.004	0.195	0.524
35 -18.322 -27.3		4.343	-24.694	34.658	0.506	-0.043	0.100	0.520
35 -18.322 -27.3		8.976	-25.975	31.942	0.505	-0.074	0.138	0.529
00 00 440 074		13.065	-27.090	29.143	0.428	-0.089	0.180	0.473
m → 36 -22.116 -27.2 37 -18.587 -26.6 38 -22.632 -26.6	384 22.476	-17.905	-27.409	22.747	0.417	-0.025	0.271	0.498
m	274 22.351	-21.790	-27.289	22.592	0.326	-0.015	0.241	0.406
	619 27.697	-18.216	-26.610	27.936	0.371	0.010	0.239	0.441
	572 27.493	-22.190	-26.561	27.672	0.441	0.011	0.179	0.476
39 -19.700 -24.4		-19.317	-24.370	34.519	0.448	0.067	0.249	0.517
40 -22.997 -24.5	529 33.900	-22.566	-24.478	34.100	0.431	0.052	0.200	0.477

Figure D-3. Interior Crush Deformation Data – Set 1, Test No. MGSC-7

	Year:	2009		Make:	Hyundai	•	Model:		Accent		
						POST CRU RUSH - SET					
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔΖ (in.)	Total ∆ (in.)
	1	37.585	-29.643	25.175	37.750	-29.743	24.705	0.165	-0.101	-0.470	0.508
-	2	36.046	-19.143	28.955	36.183	-19.255	28.584	0.138	-0.113	-0.371	0.411
DASH	3	40.836	-10.907	26.406	40.927	-10.994	26.079	0.092	-0.088	-0.327	0.351
Ď	4	39.246	-5.202	26.523	39.360	-5.292	26.236	0.115	-0.089	-0.287	0.322
	5 6	35.349	-5.135	19.965	35.430 37.341	-5.239 -4.696	19.714 11.071	0.081	-0.104	-0.251	0.284
	7	37.303 42.219	-4.645 -32.523	11.370 6.095	42.206	-4.696	5.593	0.038	-0.051 0.167	-0.300 -0.502	0.306
	8	42.219	-32.523	3.717	42.206	-32.356	3.181	-0.014	0.167	-0.502	0.529
SIDE PANEL	9	45.171	-32.683	3.465	45.163	-32.201	3.022	-0.042	0.252	-0.330	0.639
	10	10.569	-30.384	25.205	10.503	-31.198	24.771	-0.066	-0.813	-0.434	0.924
D	10	20.884	-31.402	24.592	20.856	-31.914	24.144	-0.028	-0.512	-0.448	0.681
CR DR	12	33.221	-32.629	23.732	33.209	-32.848	23.206	-0.011	-0.219	-0.526	0.569
δQ	13	27.546	-32.502	12.762	27.505	-33.045	12.224	-0.041	-0.543	-0.538	0.765
IMPACT SIDE DOOR	14	21.311	-31.923	14.115	21.297	-32.538	13.608	-0.014	-0.616	-0.506	0.797
	15	12.606	-31.180	14.135	12.626	-31.677	13.750	0.020	-0.497	-0.385	0.629
	16	24.141	-23.607	40.803	24.248	-23.868	40.415	0.107	-0.262	-0.389	0.481
	17	25.319	-18.770	41.207	25.481	-19.013	40.824	0.161	-0.243	-0.383	0.482
	18	26.377	-13.336	41.474	26.502	-13.597	41.128	0.125	-0.261	-0.345	0.450
	19	27.080	-8.635	41.595	27.228	-8.947	41.265	0.147	-0.312	-0.329	0.477
	20	27.587	-4.468	41.608	27.760	-4.793	41.296	0.173	-0.325	-0.312	0.483
	21 22	18.726 19.573	-21.973 -18.159	43.071	18.893 19.773	-22.249 -18.428	42.681 43.019	0.166	-0.276 -0.268	-0.390 -0.373	0.506
ROOF	22	20.480	-18.159	43.392 43.717	20.662	-18.428	43.019	0.200	-0.268	-0.373	0.501
RO	23	21.019	-8.289	43.896	21.179	-8.579	43.592	0.162	-0.289	-0.304	0.449
	25	21.013	-3.938	44.050	21.175	-4.215	43.777	0.100	-0.277	-0.273	0.434
	26	15.436	-20.248	43.833	15.587	-20.509	43.463	0.151	-0.261	-0.370	0.477
	27	15.735	-17.458	44.108	15.890	-17.780	43.748	0.154	-0.322	-0.359	0.507
	28	16.641	-12.791	44.391	16.797	-13.040	44.071	0.155	-0.249	-0.320	0.434
	29	17.231	-7.868	44.591	17.411	-8.212	44.295	0.180	-0.345	-0.296	0.489
	30	17.969	-3.687	44.610	18.131	-4.008	44.345	0.162	-0.321	-0.266	0.447
R	31	24.486	-26.466	38.150	24.640	-26.698	37.759	0.154	-0.232	-0.391	0.480
A A	32	27.905	-27.368	36.819	28.082	-27.606	36.382	0.177	-0.238	-0.438	0.529
A PILLAR	33	32.612	-28.874	34.273	32.774	-29.096	33.816	0.162	-0.222	-0.457	0.533
-	34	36.754	-30.180	31.606	36.905	-30.377	31.177	0.150	-0.197	-0.430	0.496
	35	6.158	-28.746	23.969	6.259	-28.888	23.534	0.100	-0.142	-0.435	0.469
R	36 37	2.339 5.650	-28.416 -27.446	23.647 28.958	2.421 5.803	-28.553 -28.169	23.233 28.752	0.083	-0.137 -0.724	-0.414 -0.206	0.444
B PILLAR	37	1.704	-27.446	28.738	1.803	-28.169	28.752	0.099	-0.724	-0.206	0.768
Ē	30	4.357	-27.712	35.664	4.521	-26.003	35.276	0.099	-0.179	-0.410	0.480
	40	1.171	-25.680	35.161	1.324	-25.890	34.813	0.153	-0.210	-0.348	0.434

Figure D-4. Interior Crush Deformation Data – Set 2, Test No. MGSC-7

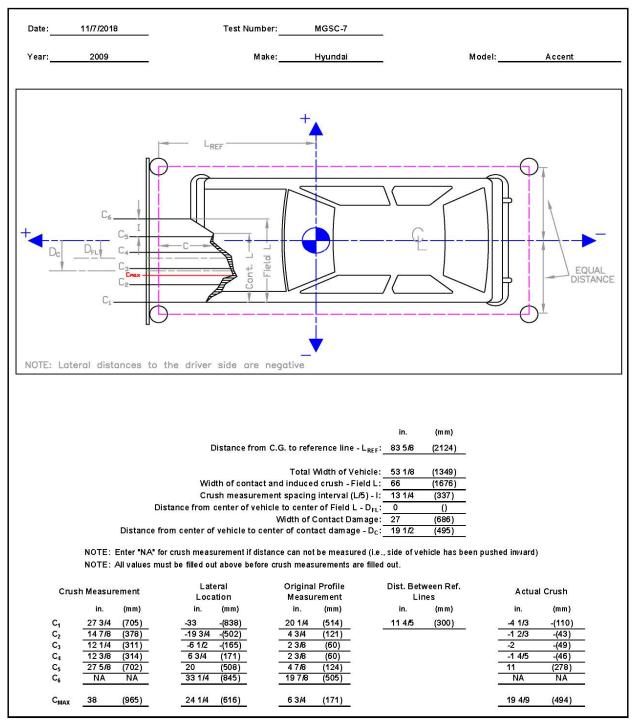


Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-7

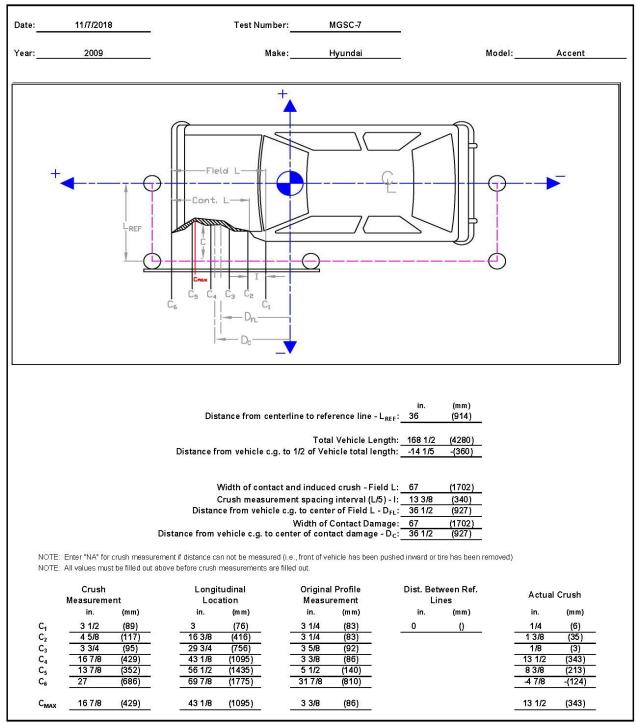


Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-7

Date: Year:	7/28/2017 2010		Test Name: Make:	MGS Do	SC-8 dge			B1GT8AS1 Ram 1500	18297	•
					PRE/POST ORPAN - SI					
POINT	X	Y	Z	X' (in.)	Y'	Z'	ΔX	ΔY (in)	ΔZ	Total ∆
1	(in.) 29.805	(in.) -33.499	(in.) 1.915	(in.) 30.044	(in.) -33.247	(in.) 1.951	(in.) 0.240	(in.) 0.252	(in.) 0.036	(in.) 0.349
2	30.762	-30.254	0.257	31.000	-30.010	0.215	0.238	0.244	-0.042	0.343
3	30.984	-25.606	-0.927	31.219	-25.391	-0.946	0.235	0.216	-0.020	0.320
4	29.565	-21.154	-1.198	29.779	-20.849	-1.197	0.214	0.305	0.001	0.372
5	27.392	-34.118	-1.257	27.671	-33.792	-1.294	0.279	0.327	-0.037	0.431
6	28.280 28.051	-30.452 -26.309	-2.397 -2.464	28.582 28.318	-30.164 -26.106	-2.390 -2.468	0.302	0.287	0.006	0.417
8	27.535	-20.309	-2.404	27.810	-20.858	-2.598	0.207	0.203	0.000	0.330
9	24.181	-34.477	-4.475	24.410	-34.299	-4.512	0.229	0.177	-0.037	0.292
10	24.045	-30.354	-4.457	24.321	-30.120	-4.459	0.275	0.234	-0.002	0.361
11	24.225	-26.138	-4.497	24.409	-25.949	-4.542	0.184	0.189	-0.046	0.268
12	24.383	-21.218	-4.439	24.639	-20.979	-4.441	0.257	0.239	-0.002	0.351
13 14	20.015 19.673	-34.794 -30.689	-6.453 -6.488	20.271	-34.600 -30.458	-6.481 -6.488	0.256	0.194	-0.028	0.323
14	19.673	-26.381	-6.495	19.900	-30.438	-6.499	0.296	0.231	-0.004	0.375
16	19.798	-20.830	-6.472	20.002	-20.540	-6.488	0.240	0.290	-0.016	0.355
17	14.920	-35.233	-6.862	15.203	-34.973	-6.888	0.284	0.260	-0.026	0.386
18	14.818	-31.216	-6.815	15.079	-30.953	-6.831	0.261	0.264	-0.016	0.372
19	15.722	-26.717	-6.608	16.003	-26.408	-6.619	0.281	0.310	-0.011	0.418
20 21	15.969 9.055	-20.466 -35.041	-6.633 -6.866	16.224 9.255	-20.192 -34.705	-6.651 -6.900	0.255	0.274 0.336	-0.019 -0.034	0.375
21	8.432	-30.837	-6.792	8.665	-30.584	-6.821	0.200	0.336	-0.034	0.395
23	8.241	-26.861	-6.790	8.434	-26.609	-6.801	0.193	0.252	-0.011	0.318
24	8.355	-20.777	-6.831	8.602	-20.505	-6.845	0.247	0.272	-0.014	0.367
25	-0.135	-31.443	-2.841	0.103	-31.159	-2.866	0.237	0.284	-0.025	0.371
26	-0.009	-27.898	-2.838	0.175	-27.589	-2.864	0.184	0.309	-0.026	0.360
27 28	-0.153 -0.112	-25.218	-2.909 -2.877	0.119	-24.932 -20.514	-2.915 -2.888	0.273	0.286	-0.006	0.395
20	-V.112	-20.702	-2.011	0.100	-20.014	-2.000	0.212	0.240	-0.011	0.000
DOOR-		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 16 20 24		HBOARI				D	DOR

Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSC-8

Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSC-8

	Year:	7/28/2017 2010		Make:	Do	SC-8 dge POST CRU	Model:		B1GT8AS1 Ram 1500		.a ■£
						RUSH - SET					
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔΖ (in.)	Total ∆ (in.)
	1	14.593	-34.864	24.614	14.897	-34.627	24.577	0.305	0.238	-0.037	0.388
											0.413
R	3	11.183	-6.189	25.113	11.475	-5.886	25.063	0.292	0.303	-0.050	0.424
DASH	4	11.136	-32.294	13.789	11.419	-32.022	13.756	0.283	0.272	-0.033	0.394
-	5	10.442	-18.332	13.405	10.746	-18.111	13.315	0.303	0.221	-0.090	0.386
	6		-6.719	13.838	8.641	-6.524	13.840	0.272	0.195	0.002	0.335
	2 14.309 -16.761 25.473 14.602 -16.470 25.449 0.293 0.291 -0.024 0.4 3 11.183 -6.189 25.113 11.475 -5.886 25.063 0.292 0.303 -0.050 0.4 4 11.136 -32.294 13.789 11.419 -32.022 13.756 0.283 0.272 -0.033 0.2 5 10.442 -18.332 13.405 10.746 -18.111 13.315 0.303 0.221 -0.090 0.3 6 8.369 -6.719 13.838 8.641 -6.524 13.840 0.272 0.195 0.002 0.3 8 22.108 -38.732 3.617 20.413 -38.453 3.644 0.192 0.280 0.026 0.3 9 26.433 -38.89 2.584 26.818 -38.27 2.455 0.385 0.223 0.13 10 -13.199 -40.475 21.396 -13.065 -40.399	0.340									
ANI											0.370
IMPACT SIDE SIDE DOOR PANEL	2210	Succession of the second second	141101111111111111111111111111111111111	A 27 (2004) 28 (212						Line to you wanted by	0.483
Щ	323332									a statistica solo	0.156
SIC ~	1022/02						2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K	200702012020000	and the second second	100000000000000000000000000000000000000	0.293
ËÖ											0.343
PAD											0.316
MF			10.1071 0.000 0.000 0.000 0.000	N.20126443 57			0.0760730.000			1997 BL 64 BEAU BL 67 62	0.427
_											0.446
											0.358
											0.291
											0.379
											0.474
	10003342		2010/07/07/07/07/07			1860 61870 II	100703333559219	101220200 11			0.349
11		2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									0.309
ROOF			· · · · · · · · · · · · · · · · · · ·								0.390
RO	7755525										0.402
											0.319
	26	-9.237	-28.779	44.304	-9.017	-28.633	44.251	0.220	0.146	-0.054	0.269
	27	-8.313	-22.936	44.663	-8.007	-22.700	44.609	0.307	0.236	-0.053	0.390
											0.248
	29	-6.846	-12.574	44.944	-6.478	-12.361	44.885	0.368	0.213	-0.059	0.429
	30	-6.473	-7.476	44.964	-6.155	-7.335	44.917	0.317	0.141	-0.047	0.350
Ř	31	4.422	-34.084	37.971	4.714	-33.849	38.020	0.293	0.236	0.050	0.379
A PILLAR	32	11.290	-35.596	33.964	11.624	-35.364	33.912	0.334	0.233	-0.052	0.410
, L	33	14.870	-36.382	31.422	15.113	-36.134	31.474	0.242	0.248	0.052	0.350
19 - 19 C	34	16.777	-36.700	29.516	16.973	-36.436	29.592	0.196	0.265	0.077	0.338
	35	-23.345	-38.497	21.768	-23.070	-38.285	21.762	0.275	0.212	-0.006	0.347
R	36	-19.734	-38.428	22.197	-19.486	-38.212	22.197	0.248	0.216	0.000	0.329
B PILLAR	37	-23.485	-37.780	27.927	-23.190	-37.562	27.941	0.295	0.218	0.014	0.367
Ы	38 39	-20.264 -24.017	-37.808 -34.465	27.550 37.590	-19.940 -23.688	-37.593 -34.245	27.526 37.594	0.324	0.214	-0.024 0.004	0.389
	39 40	-24.017	-34.465	37.590	-23.688	-34.245	37.594	0.329	0.220	0.004	0.396
		-21.340	-04.440	57.017	-21.000	-94.211	57.004	0.314	0.230	0.030	0.391

Figure D-9. Interior Crush Deformation Data – Set 1, Test No. MGSC-8

		2010		VEH	ICLE PRE/	SC-8 dge POST CRU	SH		Ram 1500		
					ERIOR CH	USH - SET	2				
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔΖ (in.)	Total ∆ (in.)
	1	41.867	-34.038	26.794	41.859	-34.221	26.737	-0.008	-0.183	-0.057	0.191
	2	41.323	-15.933	27.691	41.332	-16.123	27.642	0.009	-0.189	-0.049	0.196
동	3	38.041	-5.393	27.307	38.090	-5.703	27.233	0.049	-0.310	-0.074	0.322
DASH	4	38.455	-31.486	15.987	38.494	-31.679	15.894	0.039	-0.193	-0.093	0.218
	5	37.527	-17.608	15.624	37.614	-17.803	15.459	0.087	-0.194	-0.166	0.270
	6	35.294	-5.925	15.964	35.337	-6.203	15.883	0.043	-0.277	-0.081	0.292
ШШ	7	47.746	-37.779	5.881	47.637	-37.990	5.923	-0.110	-0.211	0.042	0.242
	8	49.629	-37.717	2.451	49.563	-37.939	2.428	-0.066	-0.222	-0.023	0.233
E SIDE PANEL	9	53.930	-37.425	4.798	53.900	-37.677	4.832	-0.030	-0.252	0.034	0.256
Ш	10	14.139	-40.060	23.328	14.182	-40.440	23.328	0.043	-0.380	0.000	0.382
IMPACT SIDE DOOR	11	25.108	-39.715	23.239	25.124	-40.044	23.250	0.016	-0.330	0.011	0.330
ËÖ	12	36.150	-39.341	23.124	36.087	-39.631	23.090	-0.063	-0.290	-0.033	0.298
ADD	13	16.917	-40.732	3.256	16.811	-40.928	3.147	-0.107	-0.196	-0.109	0.249
Σ	14	27.363	-41.279	4.176	27.184	-41.387	4.096	-0.179	-0.107	-0.080	0.224
=	15	34.283	-40.715	3.824	34.211	-40.815	3.888	-0.072	-0.100	0.064	0.139
	16	30.735	-28.983	42.648	30.744	-29.112	42.660	0.009	-0.128	0.012	0.129
	17	32.046	-24.034	42.877	32.066	-24.255	42.862	0.021	-0.220	-0.015	0.222
	18	32.796	-20.045	43.004	32.846	-20.238	42.980	0.050	-0.193	-0.023	0.201
	19	33.514	-13.779	43.174	33.601	-14.110	43.121	0.087	-0.331	-0.053	0.346
	20 21	33.899 22.394	-5.974 -28.610	43.176 45.782	33.990 22.408	-6.281 -28.905	43.122 45.725	0.091	-0.308 -0.294	-0.054 -0.057	0.325
	21	22.394	-28.010	45.782	23.243	-28.905	46.160	0.013	-0.294	-0.057	0.300
ROOF	22	23.651	-16.377	46.445	23.696	-16.663	46.382	0.037	-0.378	-0.063	0.380
RO	23	24.157	-12.211	46.495	24.257	-12.527	46.427	0.100	-0.315	-0.067	0.337
	25	24.633	-6.418	46.483	24.753	-6.687	46.428	0.120	-0.268	-0.055	0.299
	26	17.800	-28.295	46.301	17.898	-28.589	46.239	0.098	-0.294	-0.062	0.316
	27	18.666	-22.444	46.666	18.695	-22.716	46.610	0.029	-0.272	-0.056	0.279
	28	19.856	-16.563	46.850	19.768	-16.856	46.806	-0.088	-0.293	-0.044	0.309
	29	19.865	-12.083	46.964	20.017	-12.360	46.905	0.152	-0.277	-0.059	0.321
	30	20.199	-7.039	46.986	20.259	-7.314	46.942	0.060	-0.275	-0.044	0.285
٣	31	31.547	-33.372	40.115	31.674	-33.657	40.092	0.126	-0.285	-0.023	0.313
A LAF	32	38.498	-34.783	36.139	38.572	-35.044	36.072	0.074	-0.261	-0.066	0.279
A PILLAR	33	42.147	-35.523	33.610	42.211	-35.786	33.582	0.063	-0.263	-0.028	0.272
ደ	34	44.038	-35.798	31.718	44.077	-36.054	31.713	0.039	-0.256	-0.005	0.259
	35	4.001	-38.230	23.655	4.024	-38.477	23.684	0.023	-0.247	0.029	0.250
£	36	7.598	-38.098	24.179	7.605	-38.351	24.136	0.008	-0.253	-0.043	0.257
ъ	37	3.831	-37.516	29.808	3.809	-37.762	29.812	-0.022	-0.246	0.004	0.247
B PILLAR	38	7.026	-37.501	29.409	7.059	-37.744	29.427	0.034	-0.243	0.018	0.246
	39	3.213	-34.206	39.478	3.209	-34.459	39.457	-0.004	-0.254	-0.021	0.254
	40	5.823	-34.149	39.510	5.931	-34.378	39.526	0.108	-0.229	0.016	0.254

Figure D-10. Interior Crush Deformation Data – Set 2, Test No. MGSC-8

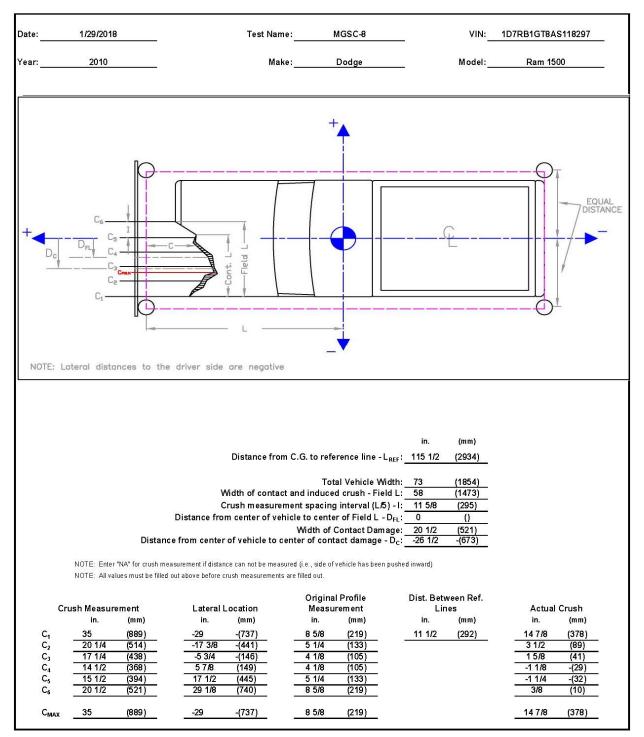


Figure D-11. Exterior Vehicle Crush (NASS) - Front, Test No. MGSC-8

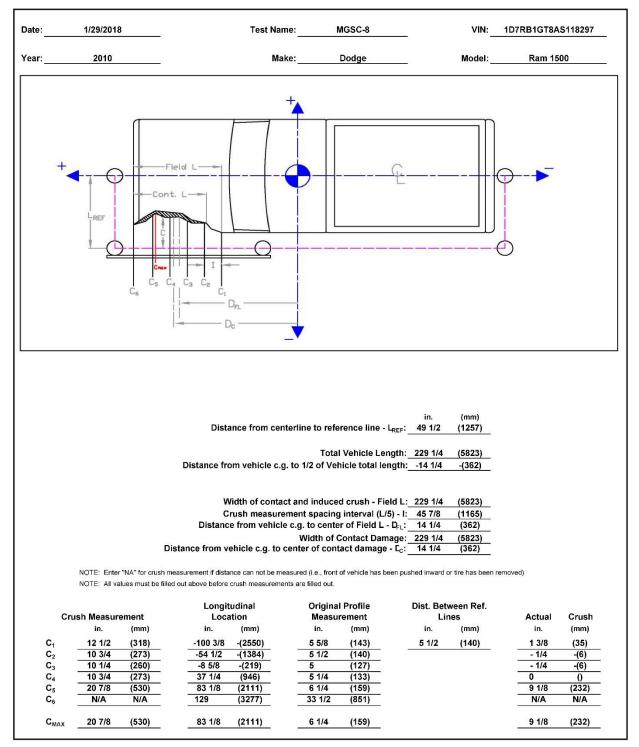


Figure D-12. Exterior Vehicle Crush (NASS) - Side, Test No. MGSC-8

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. MGSC-7

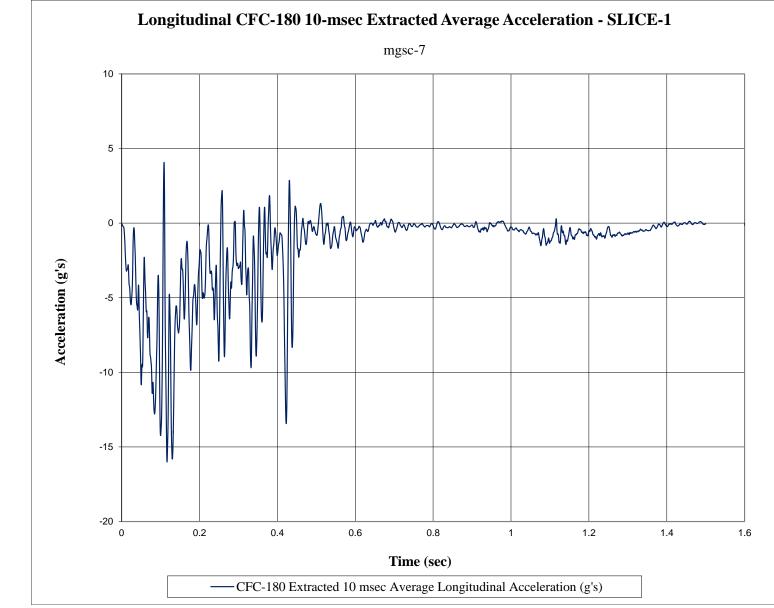


Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGSC-7

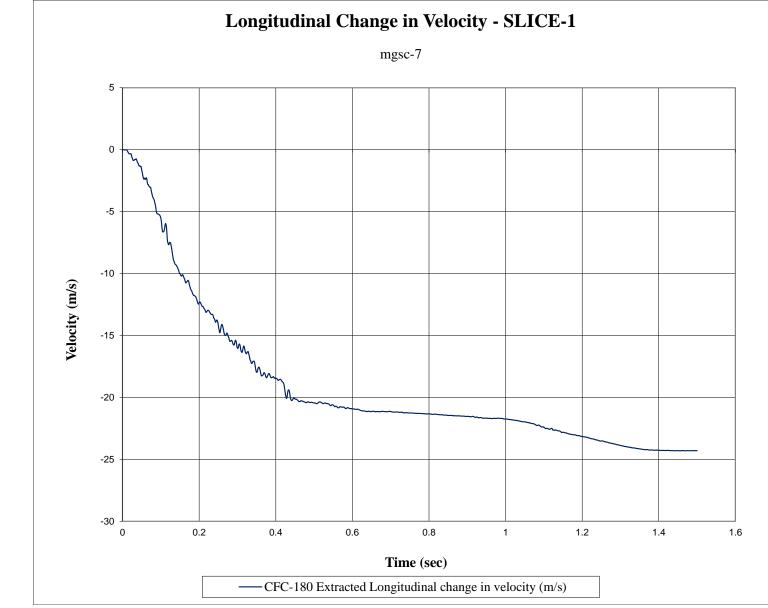


Figure E-2. Longitudinal Occupant Velocity (SLICE-1), Test No. MGSC-7

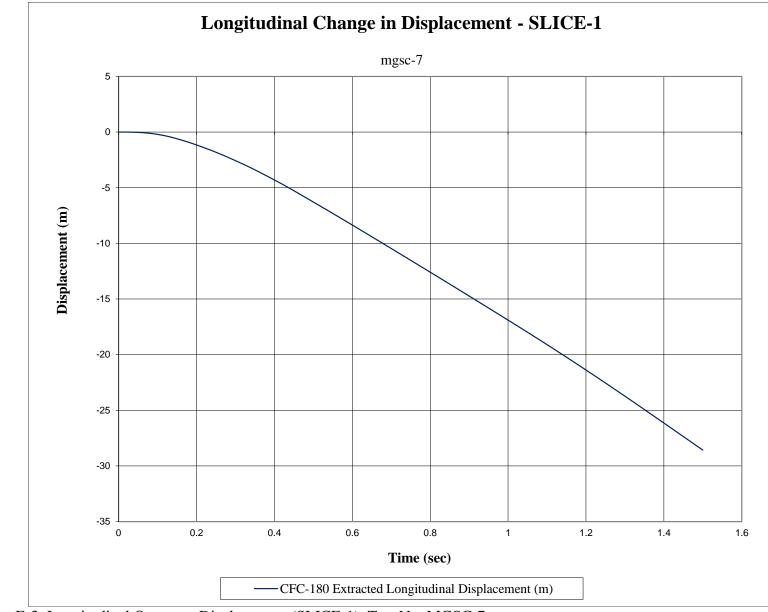


Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MGSC-7

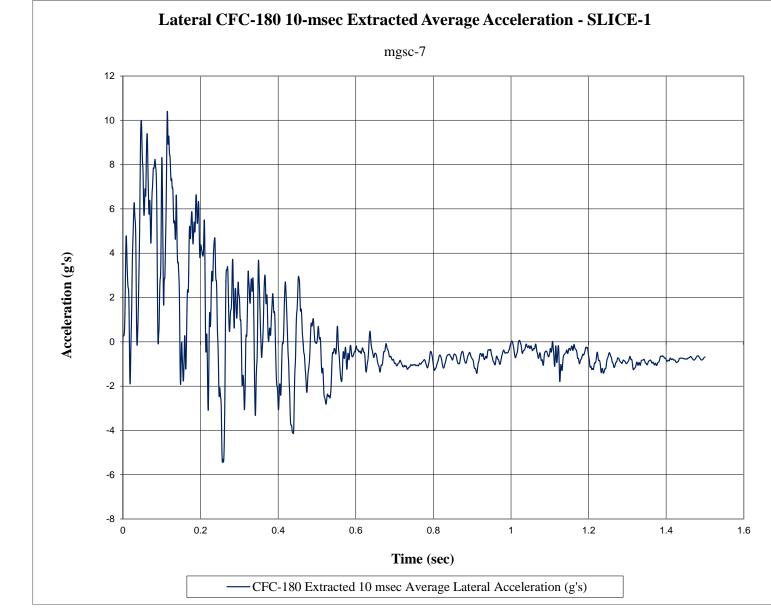


Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGSC-7

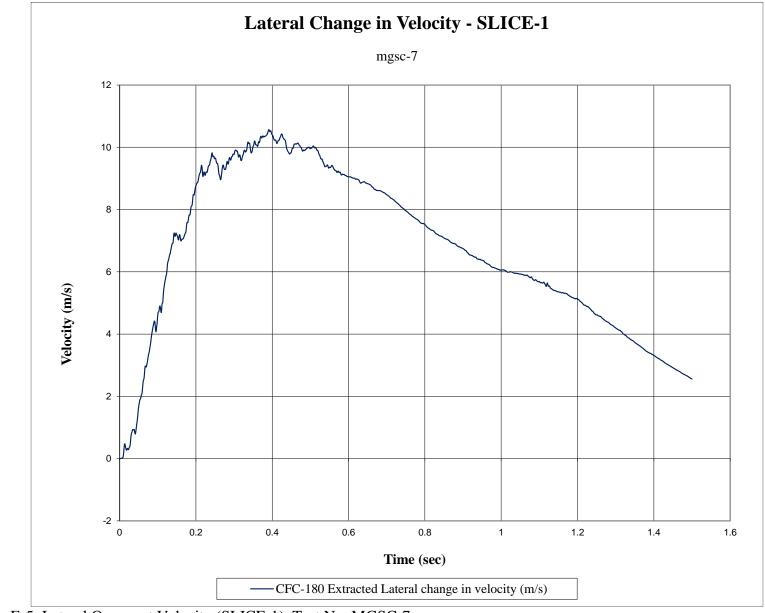


Figure E-5. Lateral Occupant Velocity (SLICE-1), Test No. MGSC-7

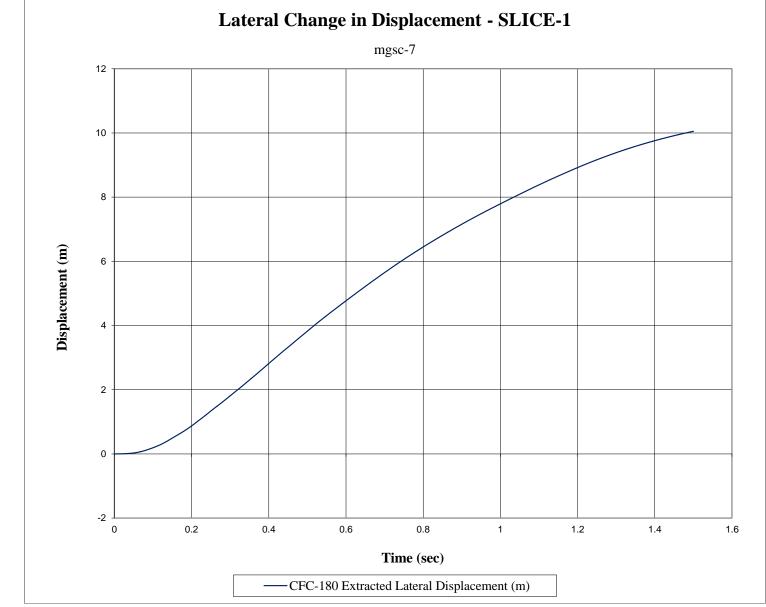


Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. MGSC-7

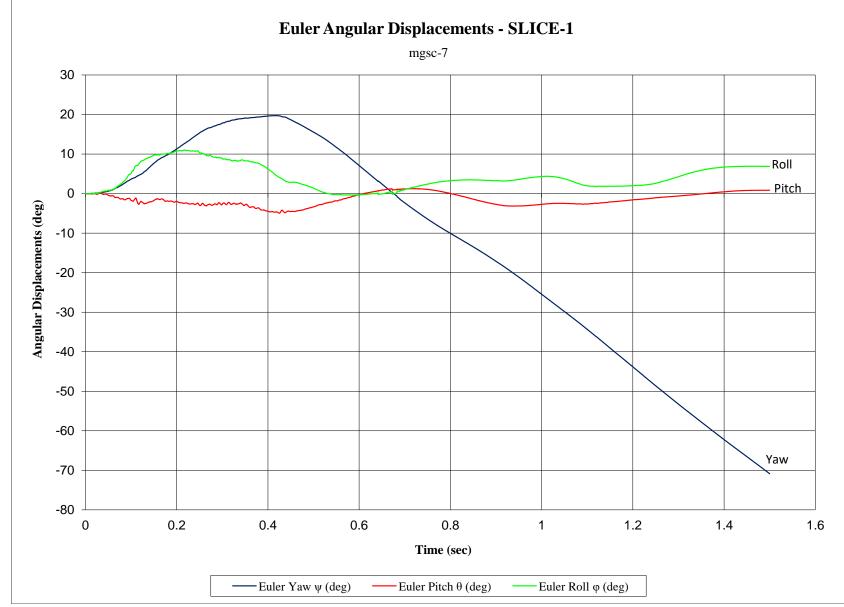


Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. MGSC-7

August 27, 2020 MwRSF Report No. TRP-03-390-20

187

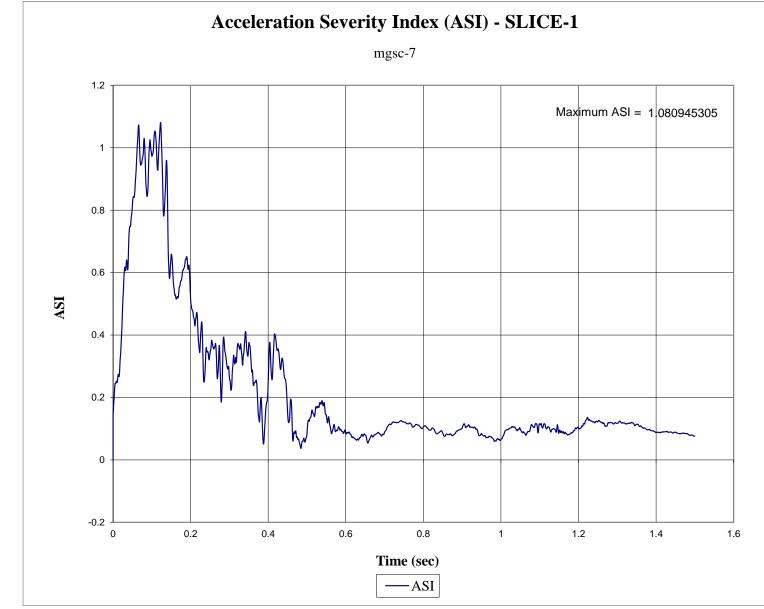


Figure E-8. Acceleration Severity Index (SLICE-1), Test No. MGSC-7

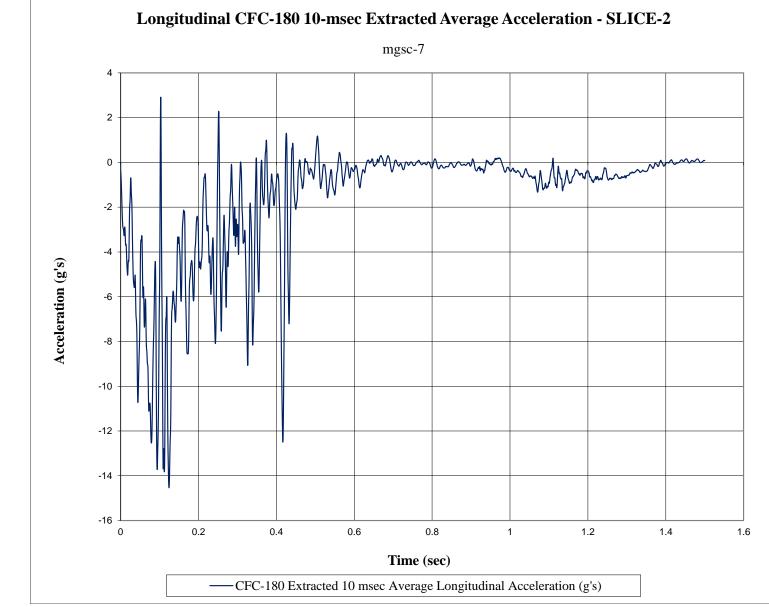


Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGSC-7

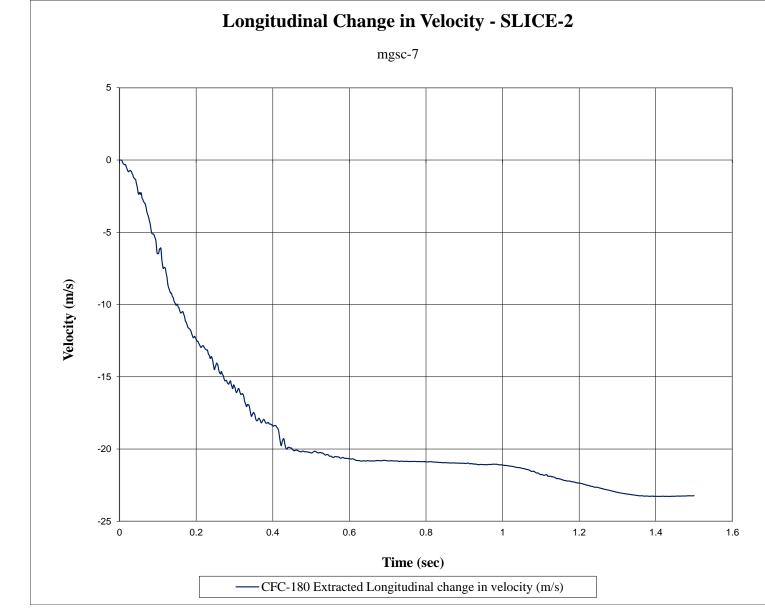


Figure E-10. Longitudinal Occupant Velocity (SLICE-2), Test No. MGSC-7

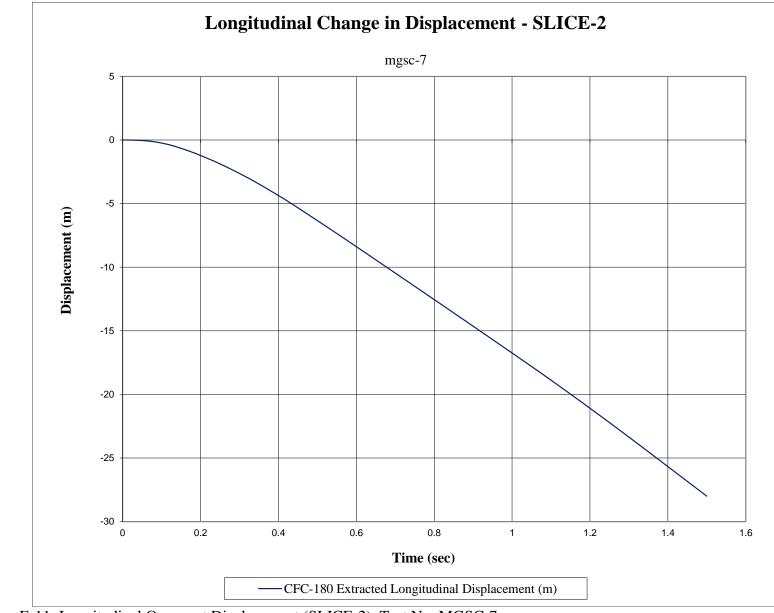


Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MGSC-7

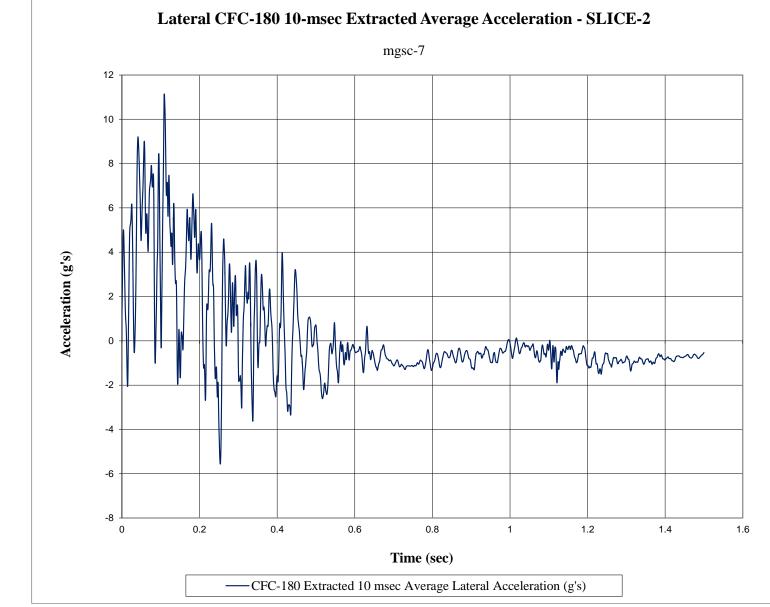


Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGSC-7

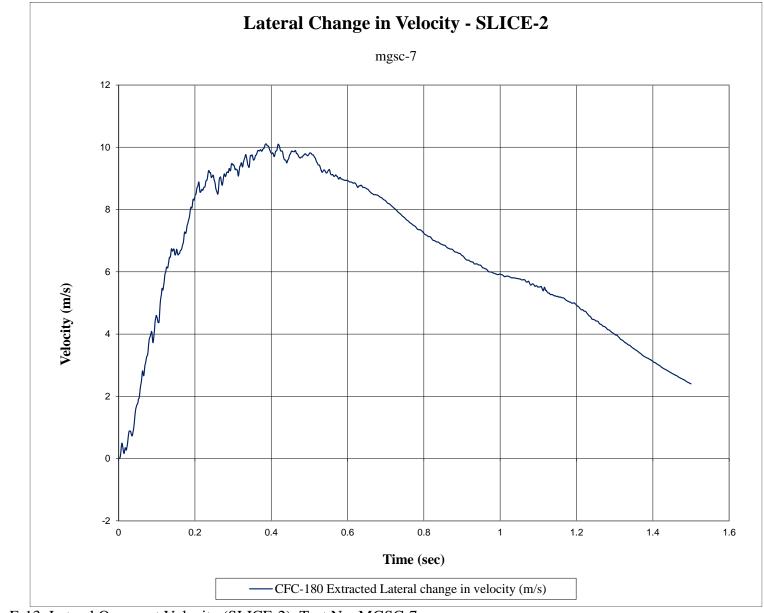


Figure E-13. Lateral Occupant Velocity (SLICE-2), Test No. MGSC-7

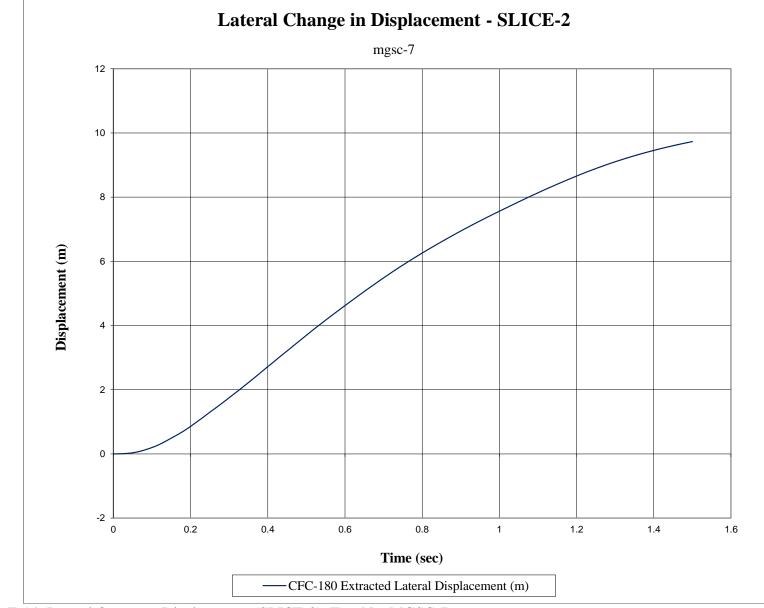


Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. MGSC-7

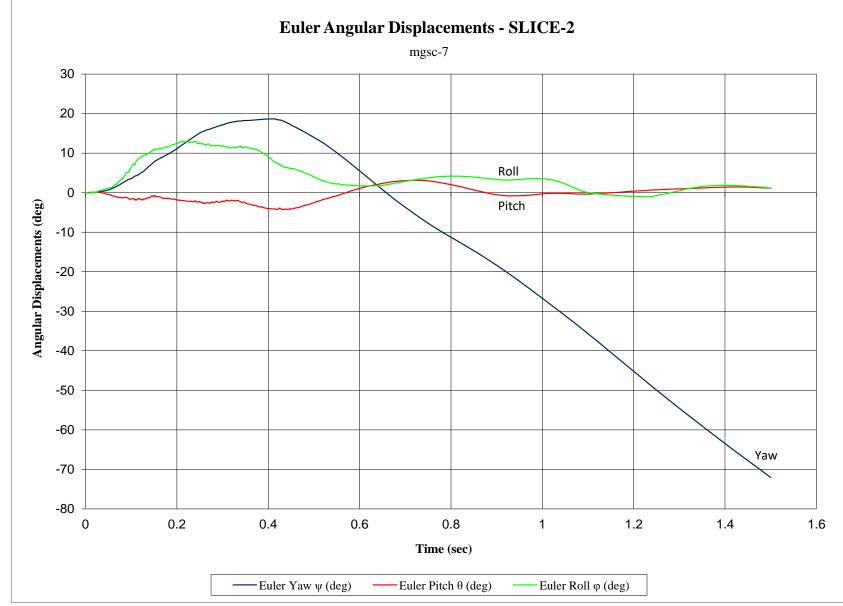


Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. MGSC-7

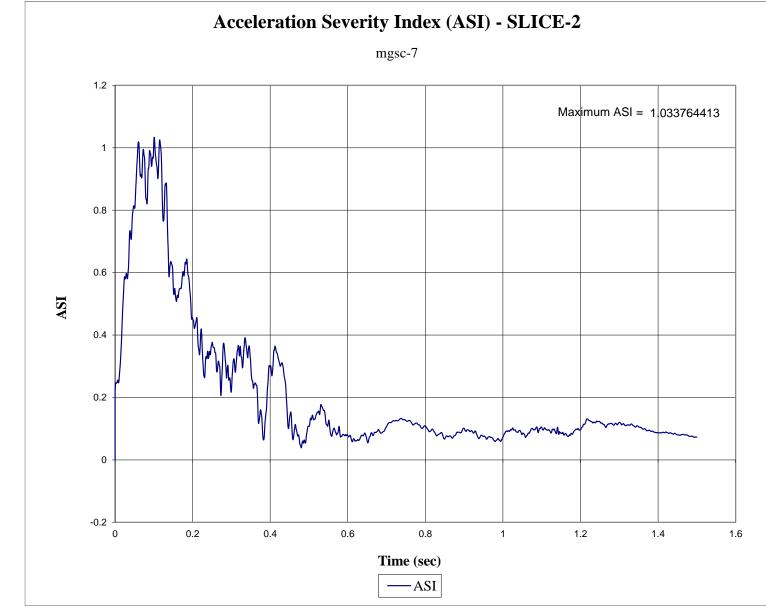


Figure E-16. Acceleration Severity Index (SLICE-2), Test No. MGSC-7

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. MGSC-8

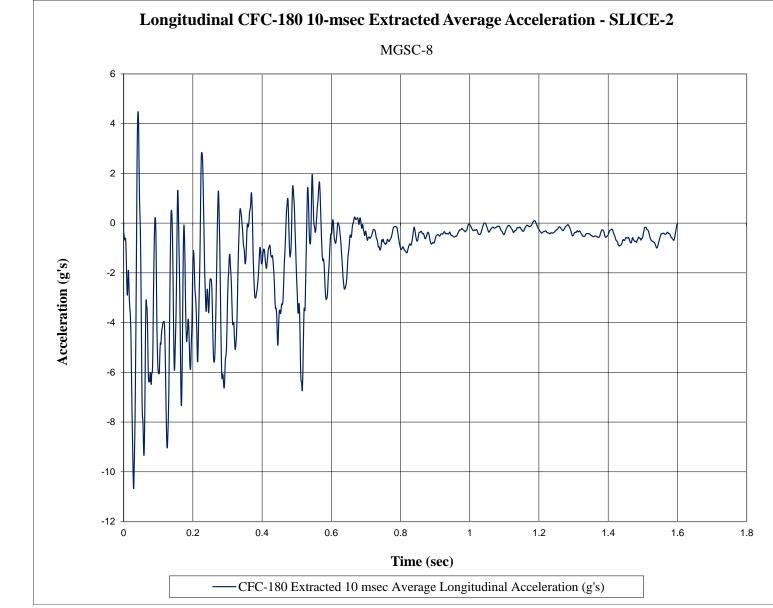


Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGSC-8

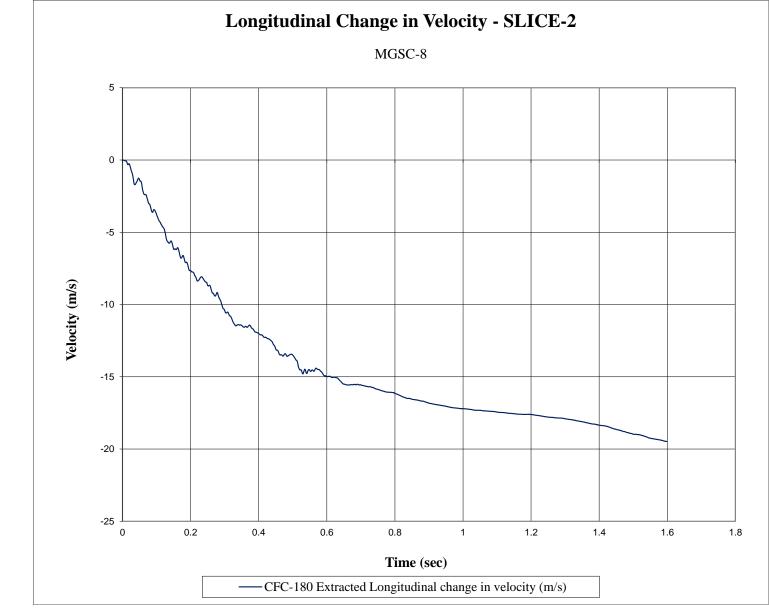


Figure F-2. Longitudinal Occupant Velocity (SLICE-2), Test No. MGSC-8

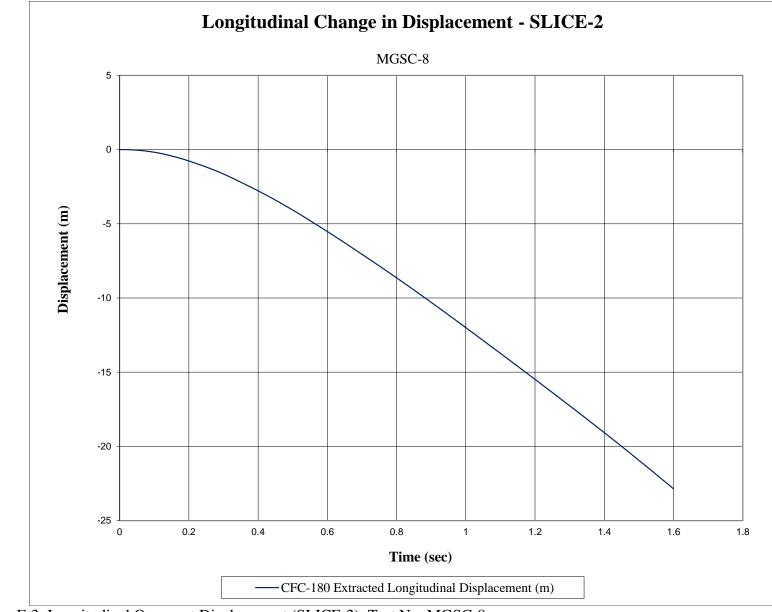


Figure F-3. Longitudinal Occupant Displacement (SLICE-2), Test No. MGSC-8

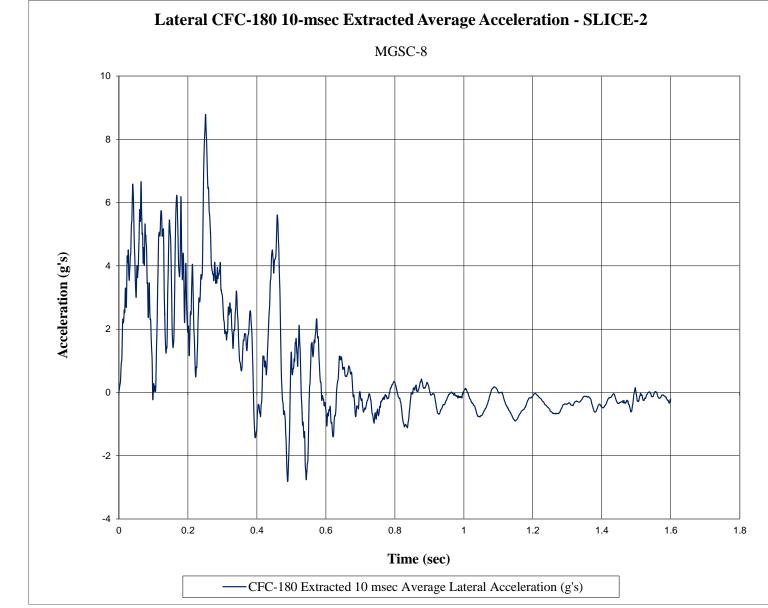


Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGSC-8

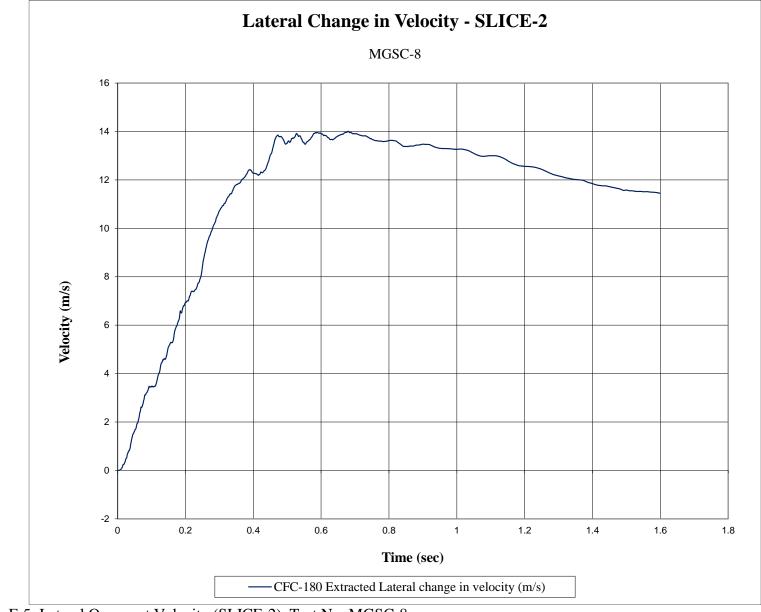


Figure F-5. Lateral Occupant Velocity (SLICE-2), Test No. MGSC-8

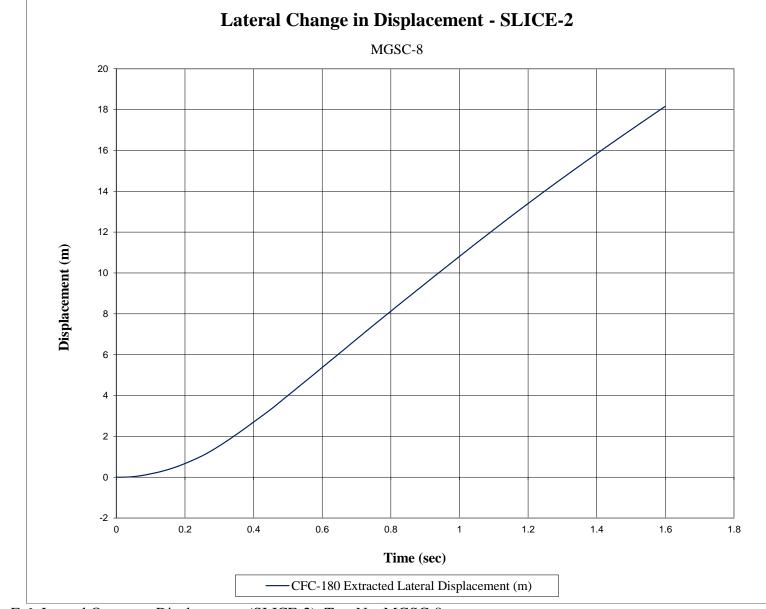


Figure F-6. Lateral Occupant Displacement (SLICE-2), Test No. MGSC-8

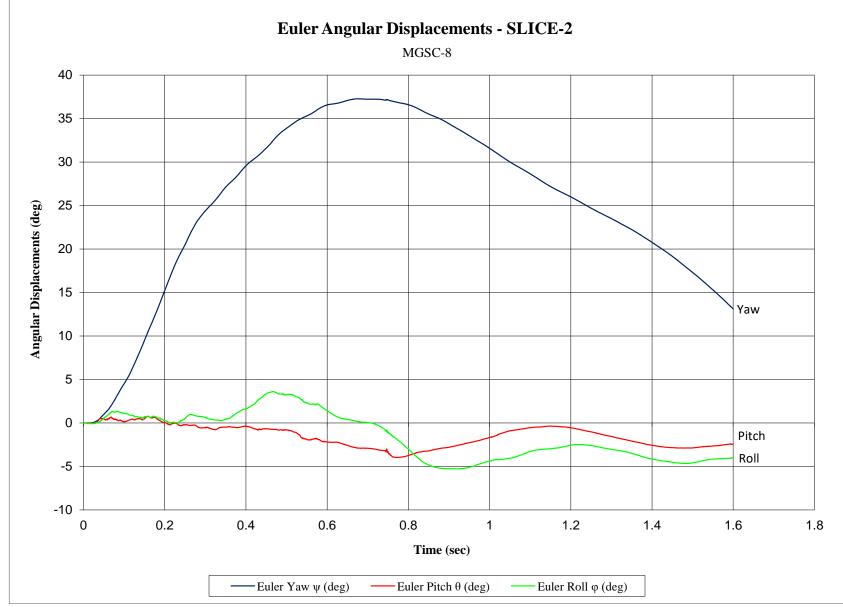


Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. MGSC-8

204

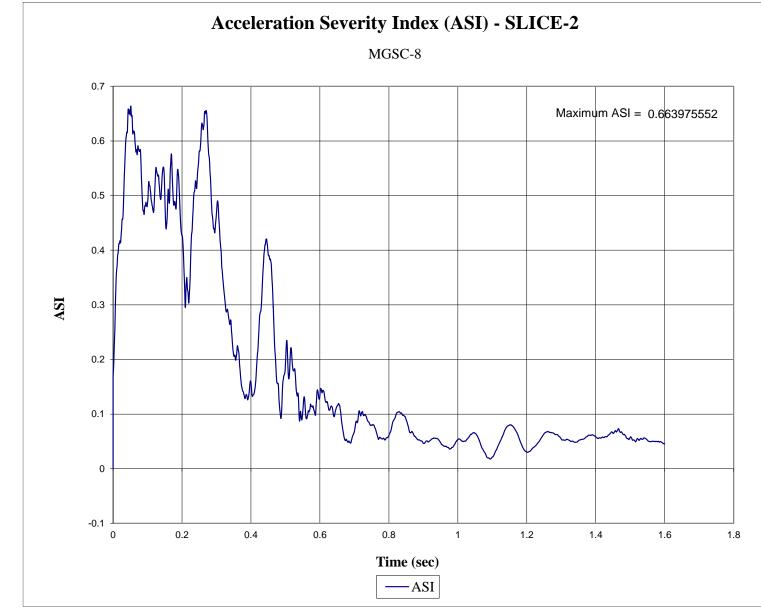


Figure F-8. Acceleration Severity Index (SLICE-2), Test No. MGSC-8

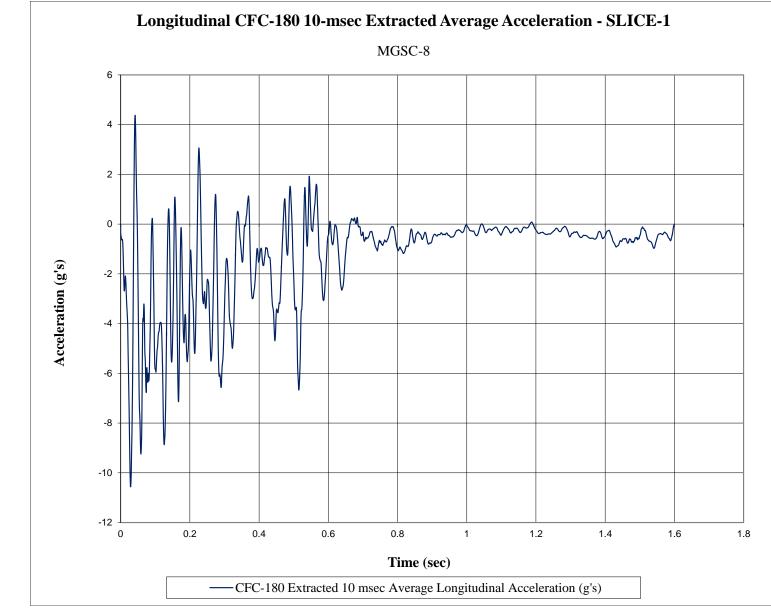


Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGSC-8

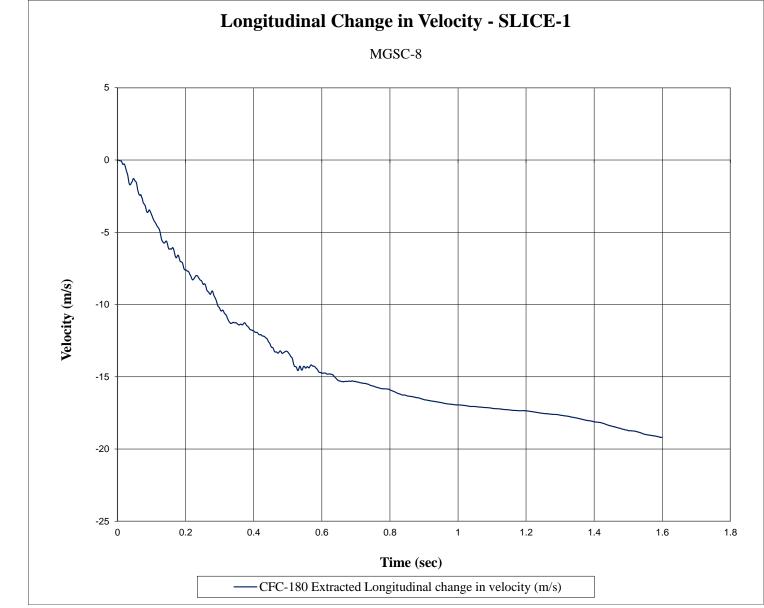


Figure F-10. Longitudinal Occupant Velocity (SLICE-1), Test No. MGSC-8

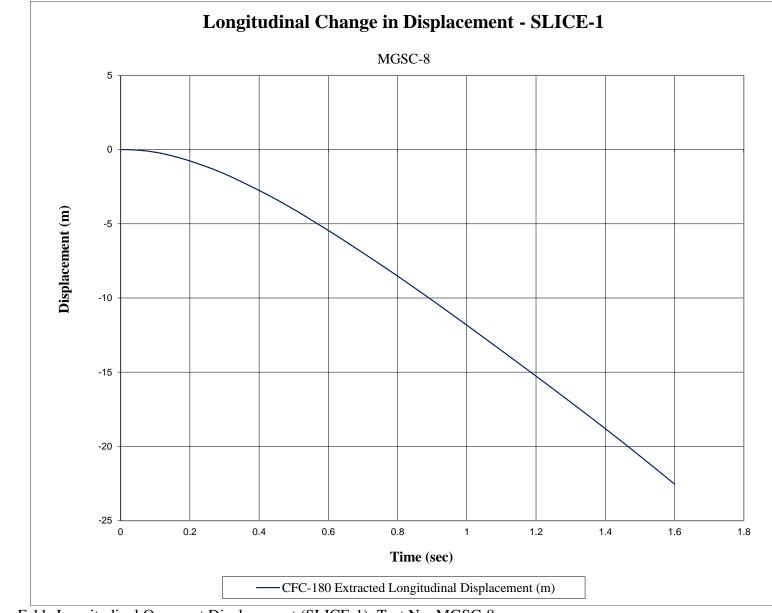


Figure F-11. Longitudinal Occupant Displacement (SLICE-1), Test No. MGSC-8

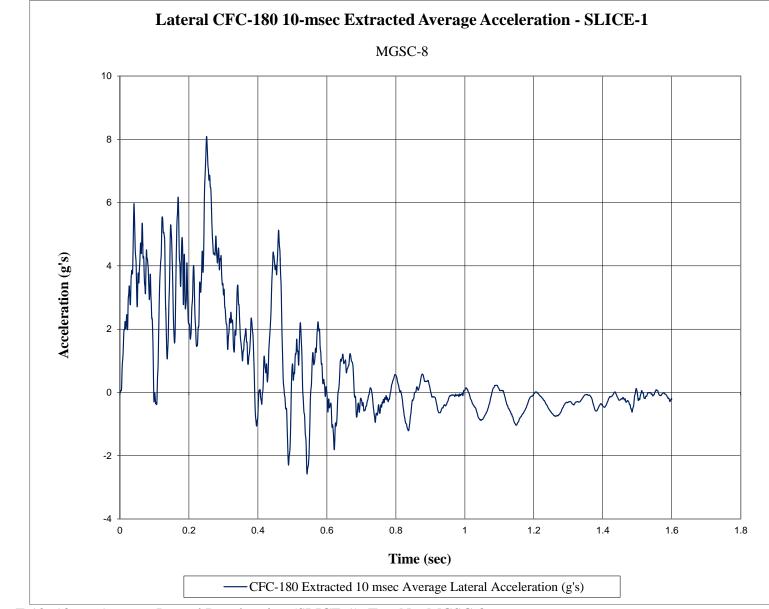


Figure F-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGSC-8

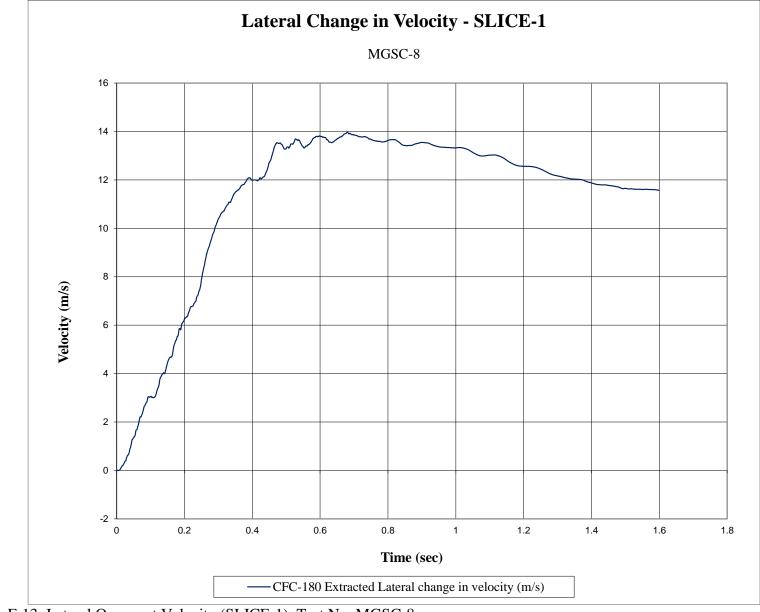


Figure F-13. Lateral Occupant Velocity (SLICE-1), Test No. MGSC-8

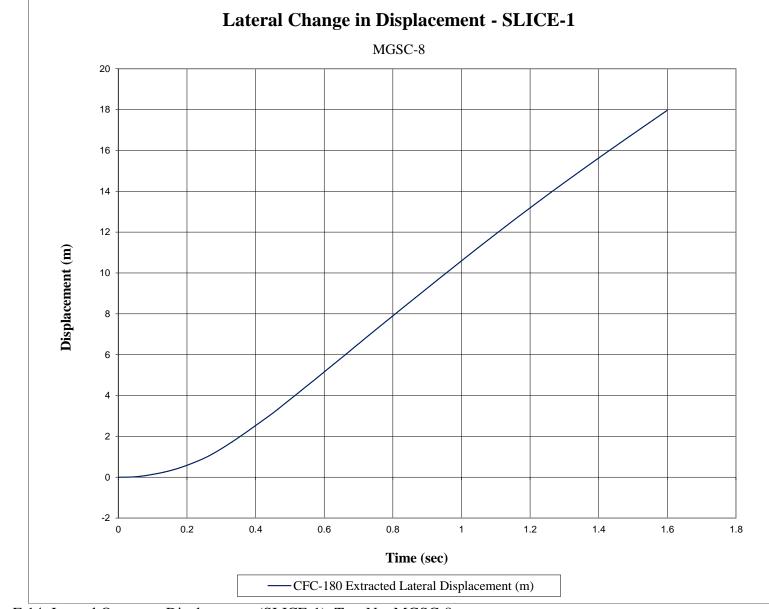


Figure F-14. Lateral Occupant Displacement (SLICE-1), Test No. MGSC-8

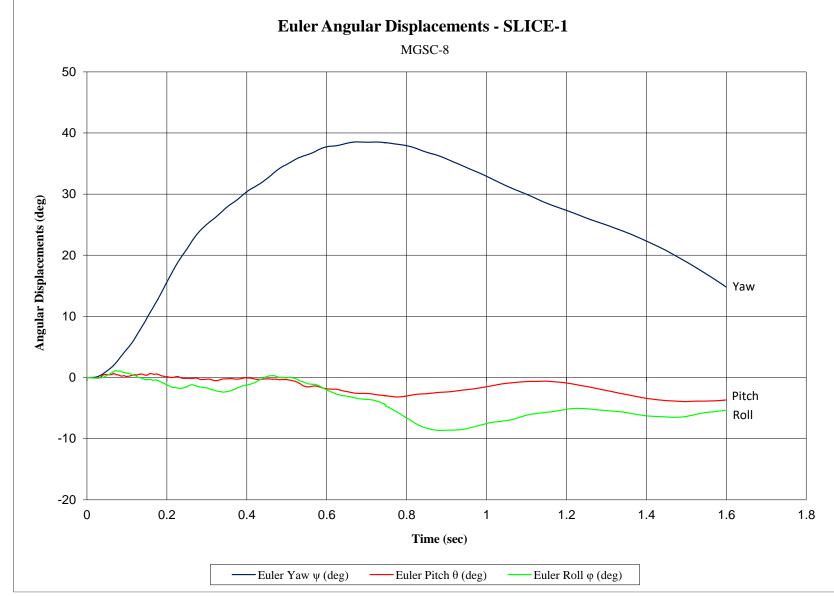


Figure F-15. Vehicle Angular Displacements (SLICE-1), Test No. MGSC-8

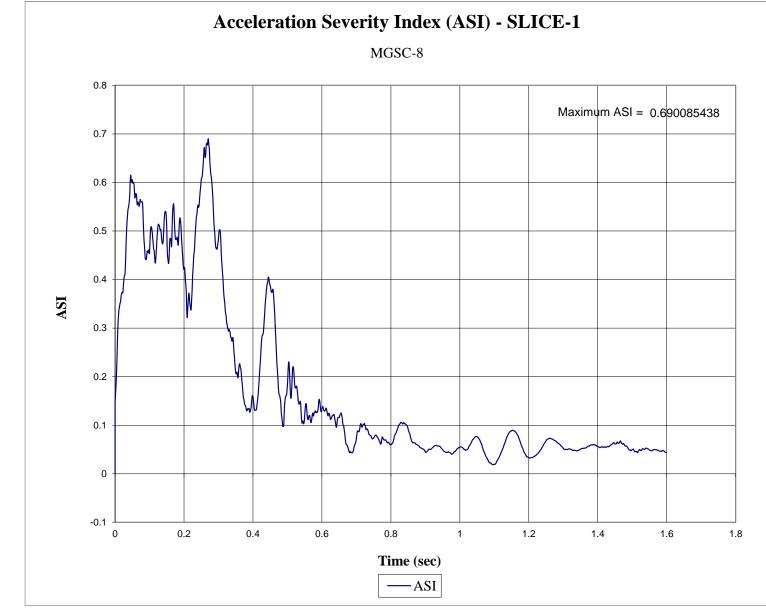


Figure F-16. Acceleration Severity Index (SLICE-1), Test No. MGSC-8

END OF DOCUMENT